Robust updating of computational models with uncertainties for dynamical systems

Conference object English OPEN
Capiez-Lernout, Evangéline; Soize, Christian;
  • Publisher: National Technical University of Athens
  • Subject: coupled dynamical systems | random matrix | modeling errors | uncertainty quantification | robust updating | composite sandwich materials | low frequency: medium frequency | random vibration | nonlinear stochastic dynamics | [SPI.MECA.VIBR]Engineering Sciences [physics]/Mechanics []/Vibrations [physics.class-ph] | [PHYS.MECA.VIBR]Physics [physics]/Mechanics [physics]/Vibrations [physics.class-ph] | structural dynamics | random unceratinties | [MATH.MATH-PR]Mathematics [math]/Probability [math.PR] | model uncertainties | nonparametric probabilistic method

International audience; This paper deals with the robust updating of stochastic computational models of composite sandwich panels in the context of structural dynamics in the low- and medium-frequency range, for which experimental results are available. The uncertain co... View more
  • References (9)

    [1] J.E. Mottershead, M.I. Friswell, Model updating in Structural Dynamics : a Survey, Journal of Sound and Vibration, 167, 347-375, 1993.

    [2] C. Mares, J.E. Mottershead, M.I. Friswell, Stochastic Model Updating: Part 1 - theory and simulated example, Mechanical Systems and Signal Processing, 20, 1674-1695, 2006.

    [4] C. Soize, Random matrix theory for modeling random uncertainties in computational mechanics, Computational methods in Applied Mechanics and Engineering, 194, 1333-1366, 2006.

    [5] C. Chen, D. Duhamel, C. Soize, Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: case of composite sandwich panels. Journal of Sound and Vibration, 294, 64-81, 2006.

    [6] C. Chen, Vibration et vibroacoustique des panneaux composites sandwich en pr e´sence d'incertitudes - expe´rimentation et validation. PhD thesis, 2006.

    [7] R.J. Serfling, Approximation theorems of mathematical statistics, Wiley, New York, 1980.

    [8] M.J.D. Powell, Variable metric methods for constrained optimization,Mathematical Programming: the state of the art, Springer Verlag, 288-311, 1983.

    [9] R. Fletcher, Practical methods of optimization,constrained optimization (Vol.2), John Wiley and Sons, 1980.

    [10] E. Capiez-Lernout, C. Soize, Robust design optimization in computational mechanics, ASME Journal of Applied Mechanics, submitted, 2007.

  • Metrics
Share - Bookmark