33 references, page 1 of 4 [1] Baba, K., Shibata, R. and Sibuya, M. (2004). Partial correlation and conditional correlation as measures of conditional independence. Australian and New Zealand Journal of Statistics 46 (4): 657{664.

[2] Cailliez, F. (1983). The analytical solution of the additive constant problem. Psychometrika, 48, 343{349.

[3] Cox, T. F. and Cox, M. A. A. (2001). Multidimensional Scaling, Second edition. Chapman and Hall.

[4] Dueck, J., Edelmann, D. Gneiting, T. and Richards, D. (2012). The a nely invariant distance correlation, submitted for publication. http://sites.stat.psu.edu/~richards/ papers/affinelyinvariant.pdf

[5] Goslee, S. C. and Urban, D. L. (2007). The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software 22(7), 1{19.

[6] Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis, Biometrika 53, 325-328.

[7] Huber, John (1981). Partial and Semipartial Correlation{A Vector Approach, The Two-Year College Mathematics Journal, 12/2, 151{153, JSTOR: 3027381.

[8] Josse, J. and Holmes, S. (2013). Measures of dependence between random vectors and tests of independence. Literature review. arXiv preprint arXiv:1307.7383. http://arxiv.org/abs/ 1307.7383.

[9] Kim, S. (2012). ppcor: Partial and Semi-partial (Part) correlation. R package version 1.0. http://CRAN.R-project.org/package=ppcor

[10] Kong, J., Klein, B. E. K., Klein, R., Lee, K., and Wahba, G. (2012). Using distance correlation and SS-ANOVA to assess associations of familial relationships, lifestyle factors, diseases, and mortality, Proc. of the National Acad. of Sciences, 109 (50), 20352{20357. DOI:10.1073/pnas.1217269109