publication . Other literature type . Article . Preprint . 2019

Light Dark Matter Search with Ionization Signals in XENON1T

Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F. D.; Antochi, V. C.; Angelino, E.; Arneodo, F.; Barge, D.; ...
Open Access
  • Published: 17 Dec 2019
  • Publisher: American Physical Society (APS)
Abstract
We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (<math><mrow><mn>22</mn><mo>±</mo><mn>3</mn></mrow></math>) tonne day. Above <math><mrow><mo>∼</mo><mn>0.4</mn><mtext> </mtext><mtext> </mtext><msub><mrow><mi>keV</mi></mrow><mrow><mi>e</mi><mi>e</mi></mrow></msub></mrow></math>, we observe <math><mrow><mo>&lt;</mo><mn>1</mn><mtext> </mtext><mtext> </mtext><mtext>event</mtext><mo>/</mo><mo>(</mo><mtext>tonne</mtext><mtext> </mtext><mi>day</mi><mtext> </mtext><msub><mrow><mi>ke...
Subjects
free text keywords: General Physics and Astronomy, Elementary Particles and Fields, * Automatic Keywords *, dark matter: mass, background, axion-like particles, absorption, [PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex], [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph], S030DN5, S030DI5, S030DE5, S029AEC, S029HPH, High Energy Physics - Experiment, Astrophysics - Cosmology and Nongalactic Astrophysics, Light Dark Matter TPC Ionization Axion-Like particles, Ionization, Scattering, Scintillation counter, Scintillation, Photon, Light dark matter, Atomic physics, Physics
Funded by
EC| INVISIBLES
Project
INVISIBLES
INVISIBLES
  • Funder: European Commission (EC)
  • Project Code: 289442
  • Funding stream: FP7 | SP3 | PEOPLE
,
EC| InvisiblesPlus
Project
InvisiblesPlus
InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
,
EC| ELUSIVES
Project
ELUSIVES
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
82 references, page 1 of 6

∥xenon@lngs.infn.it [1] G. Bertone, D. Hooper, and J. Silk, Particle dark matter:

evidence, candidates and constraints, Phys. Rep. 405, 279

(2005). [2] P. A. R. Ade et al. (Planck Collaboration), Planck 2018

results. VI. Cosmological parameters, arXiv:1807.06209. [3] L. Roszkowski, E. M. Sessolo, and S. Trojanowski, WIMP

future prospects, Rep. Prog. Phys. 81, 066201 (2018). [4] T. Marrodán Undagoitia and L. Rauch, Dark matter direct-

detection experiments, J. Phys. G 43, 013001 (2016). [5] E. Aprile et al. (XENON Collaboration), Dark Matter

XENON1T, Phys. Rev. Lett. 121, 111302 (2018). [6] E. Aprile et al. (XENON Collaboration), Constraining the

XENON1T, Phys. Rev. Lett. 122, 141301 (2019). [7] E. Aprile et al. (XENON Collaboration), The XENON1T

dark matter experiment, Eur. Phys. J. C 77, 881 (2017). [8] E. Aprile et al. (XENON Collaboration), Lowering the [OpenAIRE]

radioactivity of the photomultiplier tubes for the XENON1T

dark matter experiment, Eur. Phys. J. C 75, 546 (2015). [9] P. Barrow et al. Qualification tests of the R11410-21

photomultiplier tubes for the XENON1T detector, J.

Instrum. 12, P01024 (2017). [10] E. Aprile et al. (XENON Collaboration), Conceptual design

XENON1T experiment, J. Instrum. 9, P11006 (2014). [11] D. S. Akerib et al. (LUX Collaboration), Low-energy (0.7-

74 keV) nuclear recoil calibration of the LUX dark matter

82 references, page 1 of 6
Abstract
We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (<math><mrow><mn>22</mn><mo>±</mo><mn>3</mn></mrow></math>) tonne day. Above <math><mrow><mo>∼</mo><mn>0.4</mn><mtext> </mtext><mtext> </mtext><msub><mrow><mi>keV</mi></mrow><mrow><mi>e</mi><mi>e</mi></mrow></msub></mrow></math>, we observe <math><mrow><mo>&lt;</mo><mn>1</mn><mtext> </mtext><mtext> </mtext><mtext>event</mtext><mo>/</mo><mo>(</mo><mtext>tonne</mtext><mtext> </mtext><mi>day</mi><mtext> </mtext><msub><mrow><mi>ke...
Subjects
free text keywords: General Physics and Astronomy, Elementary Particles and Fields, * Automatic Keywords *, dark matter: mass, background, axion-like particles, absorption, [PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex], [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph], S030DN5, S030DI5, S030DE5, S029AEC, S029HPH, High Energy Physics - Experiment, Astrophysics - Cosmology and Nongalactic Astrophysics, Light Dark Matter TPC Ionization Axion-Like particles, Ionization, Scattering, Scintillation counter, Scintillation, Photon, Light dark matter, Atomic physics, Physics
Funded by
EC| INVISIBLES
Project
INVISIBLES
INVISIBLES
  • Funder: European Commission (EC)
  • Project Code: 289442
  • Funding stream: FP7 | SP3 | PEOPLE
,
EC| InvisiblesPlus
Project
InvisiblesPlus
InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
,
EC| ELUSIVES
Project
ELUSIVES
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
82 references, page 1 of 6

∥xenon@lngs.infn.it [1] G. Bertone, D. Hooper, and J. Silk, Particle dark matter:

evidence, candidates and constraints, Phys. Rep. 405, 279

(2005). [2] P. A. R. Ade et al. (Planck Collaboration), Planck 2018

results. VI. Cosmological parameters, arXiv:1807.06209. [3] L. Roszkowski, E. M. Sessolo, and S. Trojanowski, WIMP

future prospects, Rep. Prog. Phys. 81, 066201 (2018). [4] T. Marrodán Undagoitia and L. Rauch, Dark matter direct-

detection experiments, J. Phys. G 43, 013001 (2016). [5] E. Aprile et al. (XENON Collaboration), Dark Matter

XENON1T, Phys. Rev. Lett. 121, 111302 (2018). [6] E. Aprile et al. (XENON Collaboration), Constraining the

XENON1T, Phys. Rev. Lett. 122, 141301 (2019). [7] E. Aprile et al. (XENON Collaboration), The XENON1T

dark matter experiment, Eur. Phys. J. C 77, 881 (2017). [8] E. Aprile et al. (XENON Collaboration), Lowering the [OpenAIRE]

radioactivity of the photomultiplier tubes for the XENON1T

dark matter experiment, Eur. Phys. J. C 75, 546 (2015). [9] P. Barrow et al. Qualification tests of the R11410-21

photomultiplier tubes for the XENON1T detector, J.

Instrum. 12, P01024 (2017). [10] E. Aprile et al. (XENON Collaboration), Conceptual design

XENON1T experiment, J. Instrum. 9, P11006 (2014). [11] D. S. Akerib et al. (LUX Collaboration), Low-energy (0.7-

74 keV) nuclear recoil calibration of the LUX dark matter

82 references, page 1 of 6
Any information missing or wrong?Report an Issue