Closed-loop MPC with Dense Visual SLAM-Stability through Reactive Stepping

Preprint, Conference object English OPEN
Tanguy, Arnaud; De Simone, Daniele; Comport, Andrew I.; Oriolo, Giuseppe; Kheddar, Abderrahmane;
  • Publisher: HAL CCSD
  • Subject: [INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] | [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] | [INFO]Computer Science [cs] | [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing | [SPI.AUTO]Engineering Sciences [physics]/Automatic | [INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO]
    arxiv: Computer Science::Robotics

Model Predictive Control (MPC) is a widely used technique for humanoid gait generation due to its capability to handle several constraints that characterize humanoid locomotion. The use of simplified models to describe the humanoid dynamics (the Linear Inverted Pendulum... View more
  • References (25)
    25 references, page 1 of 3

    [1] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction to Humanoid Robotics. Springer, 2014.

    [2] A. Herdt, N. Perrin, and P. B. Wieber, “Walking without thinking about it,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp. 190- 195.

    [3] M. Naveau, M. Kudruss, O. Stasse, C. Kirches, K. Mombaur, and P. Soue`res, “A reactive walking pattern generator based on nonlinear model predictive control,” IEEE Robotics and Automation Letters, vol. 2, no. 1, pp. 10-17, Jan 2017.

    [4] N. A. Villa and P. Wieber, “Model predictive control of biped walking with bounded uncertainties,” in IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), Nov 2017, pp. 836-841.

    [5] S. Feng, X. Xinjilefu, C. G. Atkeson, and J. Kim, “Robust dynamic walking using online foot step optimization,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct 2016, pp. 5373-5378.

    [6] T. Whelan, J. McDonald, M. Kaess, M. Fallon, H. Johannsson, and J. J. Leonard, “Kintinuous: Spatially extended kinectfusion,” in RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras, July 2012.

    [7] M. Meilland and A. I. Comport, “On unifying keyframe and voxel-based dense visual SLAM at large scales,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3-7 November 2013, pp. 3677-3683.

    [8] M. F. Fallon, P. Marion, R. Deits, T. Whelan, M. Antone, J. McDonald, and R. Tedrake, “Continuous humanoid locomotion over uneven terrain using stereo fusion,” in IEEE-RAS International Conference on Humanoid Robots, Seoul, Korea, 3-5 November 2015, pp. 881-888.

    [9] M. F. Fallon, M. Antone, N. Roy, and S. Teller, “Drift-free humanoid state estimation fusing kinematic, inertial and lidar sensing,” in Humanoid Robots (Humanoids), 2014 14th IEEE-RAS International Conference on. IEEE, 2014, pp. 112-119.

    [10] R. Scona, S. Nobili, Y. R. Petillot, and M. Fallon, “Direct visual SLAM fusing proprioception for a humanoid robot,” IEEE International Conference on Intelligent Robots and Systems, pp. 1419-1426, 2017.

  • Related Research Results (2)
  • Metrics
Share - Bookmark