Anomalous scaling in an age-dependent branching model

Article, Preprint English OPEN
Keller-Schmidt, Stephanie; Tugrul, Murat; Eguiluz, Victor M.; Hernandez-Garcia, Emilio; Klemm, Konstantin;

We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age $\tau$ as $\tau^{-\alpha}$. Depending on the exponent $\alpha$, the scaling of tree depth with tree size $n$ displays a transition between the logarithm... View more
  • References (7)

    P. M. Agapow and A. Purvis. Power of eight tree shape statistics to detect non-random diversi cation: A comparison by simulation of two models of cladogenesis. Syst. Biol., 51:866{872, 2002. doi: 10.1080/10635150290102564.

    D. Aldous. Probability distributions on cladograms. In D. Aldous and R. Pemantle, editors, Random Discrete Structures, pages 1{18. Springer, 1996.

    T. Barraclough and S. Nee. Phylogenetics and speciation. Trends Ecol. Evol., 16:391{399, 2001. doi: 10.1016/S0169-5347(01)02161-9.

    M. G. Blum and O. Francois. Which random processes describe the tree of life? a large-scale study M. Sackin. Good and bad phenograms. Syst. Zool., 21:225{226, 1972.

    M. J. Sanderson, M. J. Donoghue, W. Piel, and T. Eriksson. TreeBASE: a prototype database of phylogenetic analyses and an interactive tool for browsing the phylogeny of life. American Journal of Botany, 81: 183, 1994. URL

    C. Venditti, A. Meade, and M. Pagel. Phylogenies reveal new interpretation of speciation and the red queen. Nature, 463:349{352, 2010.

    S. Whelan, P. I. W. de Bakker, E. Quevillon, N. Rodriguez, and N. Goldman. PANDIT: an evolution-centric database of protein and associated nucleotide domains with G. U. Yule. A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Phil. Trans. R. Soc. Lond. B, 213:21{87, 1925. doi: 10.1098/rstb.1925.0002.

  • Related Research Results (1)
    Inferred by OpenAIRE
    Universal Scaling in the Branching of the Tree of Life (2016)
  • Metrics
Share - Bookmark