Sums of residues on algebraic surfaces and application to coding theory

Article, Preprint English OPEN
Couvreur, Alain;
(2009)
  • Publisher: Elsevier BV
  • Journal: Journal of Pure and Applied Algebra,volume 213,issue 12,pages2,201-2,223 (issn: 0022-4049)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1016/j.jpaa.2009.03.009
  • Subject: MSC: 14J99, 14J20, 14G50, 94B27 | Residues | Algebra and Number Theory | Differentials | [INFO.INFO-IT]Computer Science [cs]/Information Theory [cs.IT] | [ INFO.INFO-IT ] Computer Science [cs]/Information Theory [cs.IT] | Algebraic surfaces | [ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG] | Computer Science - Information Theory | [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] | [MATH.MATH-IT]Mathematics [math]/Information Theory [math.IT] | [ MATH.MATH-IT ] Mathematics [math]/Information Theory [math.IT] | Mathematics - Algebraic Geometry | Algebraic-geometric codes | 14J99, 14J20, 14G50, 94B27

International audience; In this paper, we study residues of differential 2-forms on a smooth algebraic surface over an arbitrary field and give several statements about sums of residues. Afterwards, using these results we give a new construction of algebraic-geometric c... View more
  • References (33)
    33 references, page 1 of 4

    [1] Y. Aubry. Reed-Muller codes associated to projective algebraic varieties. In Coding theory and algebraic geometry (Luminy, 1991), volume 1518 of Lecture Notes in Math., pages 4-17. Springer, Berlin, 1992.

    [2] W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven. Compact complex surfaces, volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin, second edition, 2004.

    [3] N. Bourbaki. Alg`ebre. Hermann, Paris, 1959.

    [4] I. M. Chakravarti. Geometric construction of some families of two-class and three-class association schemes and codes from nondegenerate and degenerate Hermitian varieties. Discrete Math., 111(1-3):95-103, 1993. Graph theory and combinatorics (Marseille-Luminy, 1990).

    [5] I. S. Cohen. On the structure and ideal theory of complete local rings. Trans. Amer. Math. Soc., 59:54-106, 1946.

    [6] F. A. B. Edoukou. Codes defined by forms of degree 2 on quadrics in P4(Fq). To appear in Proceedings of Arithmetic, geometry, cryptography and coding theory 11 (Luminy 2007), AMS - Contemporary Mathematics.

    [7] F. A. B. Edoukou. Codes defined by forms of degree 2 on Hermitian surfaces and Sørensen's conjecture. Finite Fields Appl., 13(3):616-627, 2007.

    [8] F. A. B. Edoukou. Codes defined by forms of degree 2 on quadric surfaces. IEEE Trans. Inform. Theory, 54(2):860-864, 2008.

    [9] D. Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.

    [10] S. R. Ghorpade and G. Lachaud. Higher weights of Grassmann codes. In Coding theory, cryptography and related areas (Guanajuato, 1998), pages 122-131. Springer, Berlin, 2000.

  • Metrics
Share - Bookmark