Magnon transport through microwave pumping

Unknown, Preprint English OPEN
Nakata, Kouki ; Simon, Pascal ; Loss, Daniel (2015)
  • Journal: PHYSICAL REVIEW B (vol: 92, pp: 14,422)
  • Related identifiers: doi: 10.1103/PhysRevB.92.014422
  • Subject: Condensed Matter - Mesoscale and Nanoscale Physics | Condensed Matter - Quantum Gases
    arxiv: Condensed Matter::Strongly Correlated Electrons | Condensed Matter::Materials Science | Condensed Matter::Other

We present a microscopic theory of magnon transport in ferromagnetic insulators (FIs). Using magnon injection through microwave pumping, we propose a way to generate magnon dc currents and show how to enhance their amplitudes in hybrid ferromagnetic insulating junctions. To this end focusing on a single FI, we first revisit microwave pumping at finite (room) temperature from the microscopic viewpoint of magnon injection. Next, we apply it to two kinds of hybrid ferromagnetic insulating junctions. The first is the junction between a quasi-equilibrium magnon condensate and magnons being pumped by microwave, while the second is the junction between such pumped magnons and noncondensed magnons. We show that quasi-equilibrium magnon condensates generate ac and dc magnon currents, while noncondensed magnons produce essentially a dc magnon current. The ferromagnetic resonance (FMR) drastically increases the density of the pumped magnons and enhances such magnon currents. Lastly, using microwave pumping in a single FI, we discuss the possibility that a magnon current through an Aharonov-Casher phase flows persistently even at finite temperature. We show that such a magnon current arises even at finite temperature in the presence of magnon-magnon interactions. Due to FMR, its amplitude becomes much larger than the condensed magnon current.
  • References (54)
    54 references, page 1 of 6

    1 Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, et al., Nature 464, 262 (2010).

    2 D. D. Awschalom and M. E. FlattĀ“e, Nat. Phys. 3, 153 (2007).

    3 I. Zutic, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).

    4 S. O. Demokritov, V. E. Demidov, O. Dzyapko, G. A. Melkov, A. A. Serga, B. Hillebrands, and A. N. Slavin, Nature 443, 430 (2006).

    5 A. A. Serga, V. S. Tiberkevich, C. W. Sandweg, V. I. Vasyuchka, D. A. Bozhko, A. V. Chumak, T. Neumann, B. Obry, G. A. Melkov, A. N. Slavin, et al., Nat. Commun. 5, 3452 (2014).

    6 P. Clausen, D. A. Bozhko, V. I. Vasyuchka, G. A. Melkov, B. Hillebrands, and A. A. Serga, arXiv:1503.00482.

    7 K. Nakata, K. A. van Hoogdalem, P. Simon, and D. Loss, Phys. Rev. B 90, 144419 (2014).

    8 F. Meier and D. Loss, Phys. Rev. Lett. 90, 167204 (2003).

    9 K. A. van Hoogdalem and D. Loss, Phys. Rev. B 84, 024402 (2011).

    10 S. Takei and Y. Tserkovnyak, Phys. Rev. Lett. 112, 227201 (2014).

  • Metrics
    No metrics available
Share - Bookmark