Lipschitz regularity of solutions for mixed integro-differential equations

Article, Preprint English OPEN
Barles, Guy; Chasseigne, Emmanuel; Ciomaga, Adina; Imbert, Cyril;
(2012)
  • Publisher: Elsevier BV
  • Journal: Journal of Differential Equations,volume 252,issue 11,pages6,012-6,060 (issn: 0022-0396)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1016/j.jde.2012.02.013
  • Subject: [ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] | 35D10, 35D40, 35J60, 35R09 | nonlinear elliptic equations integro partial-differential equations | regularity of generalized solutions | Mathematics - Analysis of PDEs | viscosity solutions | [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] | Analysis
    arxiv: Mathematics::Analysis of PDEs

We establish new Hoelder and Lipschitz estimates for viscosity solutions of a large class of elliptic and parabolic nonlinear integro-differential equations, by the classical Ishii-Lions's method. We thus extend the Hoelder regularity results recently obtained by Barles... View more
  • References (16)
    16 references, page 1 of 2

    [1] G. Barles, E. Chasseigne, and C. Imbert, Ho¨lder continuity of solutions of second-order non-linear elliptic integro-differential equations, J. Eur. Math. Soc. (JEMS), 13 (2011), pp. 1-26.

    [2] G. Barles and C. Imbert, Second-order elliptic integro-differential equations: viscosity solutions' theory revisited, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 25 (2008), pp. 567-585.

    [3] R. F. Bass and D. A. Levin, Harnack inequalities for jump processes, Potential Anal., 17 (2002), pp. 375-388.

    [4] L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), pp. 597-638.

    [5] L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. (2), 130 (1989), pp. 189-213.

    [6] L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasigeostrophic equation, Ann. Math., 2 (2010), pp. 1903 - 1930.

    [7] P. Cardaliaguet and C. Rainer, Ho¨lder regularity for viscosity solutions of fully nonlinear, local or nonlocal, hamilton-jacobi equations with super-quadratic growth in the gradient, arXiv:1003.1059v1, (2010).

    [8] A. Ciomaga, On the strong maximum principle for second order nonlinear parabolic integro - differential equations, arXiv:1006.2607v1, (2010).

    [9] M. G. Garroni and J. L. Menaldi, Second order elliptic integro-differential problems, vol. 430 of Chapman & Hall/CRC Research Notes in Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2002.

    [10] N. Guillen and R. Schwab, Aleksandrov-bakelman-pucci type estimates for integro-differential equations. arXiv:1101.0279.

  • Metrics
Share - Bookmark