Mixing enhancement and transport reduction in chaotic advection

Conference object English OPEN
Benzekri , Tounsia; Chandre , Cristel; Leoncini , Xavier; Lima , Ricardo; Vittot , Michel;
(2005)
  • Publisher: HAL CCSD
  • Subject: [ NLIN.NLIN-CD ] Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD] | [NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD] | mixing | control of chaos
    arxiv: Nonlinear Sciences::Chaotic Dynamics

We present a method for reducing chaotic transport in a model of chaotic advection due to time-periodic forcing of an oscillating vortex chain. We show that by a suitable modification of this forcing, the modified model combines two effects: enhancement of mixing within... View more
  • References (11)
    11 references, page 1 of 2

    1. H. Aref, Stirring by chaotic advection, J. Fluid Mech., 143 , 1 (1984).

    2. J.M. Ottino, The Kinematics of mixing: streching, chaos, and transport Cambridge U.P., Cambridge, 1989.

    3. R.P. Behringer , S. Meyers and H. Swinney, Chaos and mixing in geostrophic flow, Phys. Fluids A, 3, 1243 (1991).

    4. M.G. Brown, K.B. Smith, Ocean stirring and chaotic low-order dynamics, Phys. Fluids, 3, 1186 (1991).

    5. T.H. Solomon, J.P. Gollub, Chaotic particle transport in Rayleigh-B´enard convection, Phys. Rev. A, 38, 6280 (1988).

    6. T.H. Solomon, N.S. Miller, C.J.L Spohn, J.P. Moeur, Lagrangian chaos: transport, coupling and phase separation, AIP Conf. Proc., 676, 195 (2003).

    7. H. Willaime, O.Cardoso, P. Tabeling, Spatiotemporel intermittency in lines of vortices, Phys. Rev. E, 48, 288 (1993).

    8. R. Camassa, S. Wiggins, Chaotic advection in Rayleigh-B´enard flow, Phys. Rev. A, 43, 774 (1991).

    9. C. Chandre, G. Ciraolo, F. Doveil, R. Lima, A. Macor, M. Vittot, Channelling chaos by building barriers, Phys. Rev. Lett., 94, 074101 (2005).

    10. S. Balasuriya, Optimal perturbation for enhanced chaotic transport, Physica D, 202, 155 (2005).

  • Metrics
Share - Bookmark