Cohomology and deformation theory of monoidal 2-categories I

Article, Preprint English OPEN
Elgueta, Josep;

We define a cohomology for an arbitrary $K$-linear semistrict semigroupal 2-category $(\mathfrak{C},\otimes)$ (called in the paper a Gray semigroup) and show that its first order (unitary) deformations, up to the suitable notion of equivalence, are in one-one correspond... View more
  • References (16)
    16 references, page 1 of 2

    1. J. Baez and J. Dolan, Higher dimensional algebra and topological quantum field theory, J. Math. Phys. 36 (1995), 6073-6105.

    2. , Categorification, in: Higher Category Theory (M. Kapranov E. Getzler, ed.), American Mathematical Society, 1998, A.M.S. Contemporary Mathematics, vol. 230, pp. 1-36.

    3. J. Barrett and B. Westbury, Invariants of piecewise-linear 3-manifolds, Trans. Amer. Math. Soc. 348 (1996), 3997-4022.

    4. J. B´enabou, Introduction to bicategories, Lecture Notes in Mathematics, vol. 47, Springer-Verlag, 1967.

    5. L. Crane and I. Frenkel, Four dimensional topological quantum field theory, hopf categories, and the canonical bases, J. Math. Phys. 35 (1994), 5136-5154.

    6. L. Crane and D. Yetter, Deformations of (bi)tensor categories, Cahier de Topologie et G´eometrie Differentielle Cat´egorique 39 (1998), 163-180.

    7. , Examples of categorification, Cahiers Topologie G´eometrie Diff´erentielle Cat´egorique 39 (1998), 3-25.

    8. B. Day and R. Street, Monoidal bicategories and hopf algebroids, Adv. Math. 129 (1997), 99-157.

    9. V.G. Drinfeld, On quasitriangular quasi-hopf algebras and a group closely connected with gal(Q/q), Leningrad Math. J. 2 (1991), 829-860.

    10. D. Epstein, Functors between tensored categories, Invent. Math. 1 (1966), 221-228.

  • Bioentities (2)
    1idu Protein Data Bank
    1idx Protein Data Bank
  • Metrics
Share - Bookmark