Investigation of Room Temperature Synthesis of Titanium Dioxide Nanoclusters Dispersed on Cubic MCM-48 Mesoporous Materials

Article, Other literature type English OPEN
Budhi, Sridhar ; Wu, Chia-Ming ; Zhao, Dan ; Koodali, Ranjit (2015)
  • Publisher: Multidisciplinary Digital Publishing Institute
  • Journal: Catalysts (issn: 2073-4344)
  • Related identifiers: doi: 10.3390/catal5031603
  • Subject: Chemistry | cubic mesoporous materials | cyclohexene | epoxidation | TP1-1185 | QD1-999 | titanium dioxide | Chemical technology | MCM-48

Titania containing cubic MCM-48 mesoporous materials were synthesized successfully at room temperature by a modified Stöber method. The integrity of the cubic mesoporous phase was retained even at relatively high loadings of titania. The TiO2-MCM-48 materials were extensively characterized by a variety of physico-chemical techniques. The physico-chemical characterization indicate that Ti4+ ions can be substituted in framework tetrahedral positions. The relative amount of Ti4+ ions in tetrahedral position was dependent on the order of addition of the precursor. Even at relatively high loadings of titania, no distinct bulk phase of titania could be observed indicating that the titania nanoclusters are well dispersed on the high surface area mesoporous material and probably exist as amorphous nanoclusters. The TiO2-MCM-48 materials were found to exhibit 100% selectivity in the cyclohexene oxidation at room temperature in the presence of tert-butylhydroperoxide (t-BHP) as the oxidant. The results suggest that room temperature synthesis is an attractive option for the preparation of TiO2-MCM-48 materials with interesting catalytic properties.
  • References (53)
    53 references, page 1 of 6

    1. Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; et al. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. J. Am. Chem. Soc. 1992, 114, 10834-10843.

    2. Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710-712.

    3. Schuth, F. Engineered porous catalytic materials. Annu. Rev. Mater. Res. 2005, 35, 209-238.

    4. Nooney, R.I.; Kalyanaraman, M.; Kennedy, G.; Maginn, E.J. Heavy metal remediation using functionalized mesoporous silicas with controlled macrostructure. Langmuir 2001, 17, 528-533.

    5. Vallet-Regi, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. 2007, 46, 7548-7558.

    6. Zhao, D.Y.; Feng, J.L.; Huo, Q.S.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548-552.

    7. Huo, Q.S.; Margolese, D.I.; Ciesla, U.; Feng, P.Y.; Gier, T.E.; Sieger, P.; Leon, R.; Petroff, P.M.; Schuth, F.; Stucky, G.D. Generalized synthesis of periodic surfactant inorganic composite-materials. Nature 1994, 368, 317-321.

    8. Tanev, P.T.; Pinnavaia, T.J. A neutral templating route to mesoporous molecular-sieves. Science 1995, 267, 865-867.

    9. Joo, S.H.; Choi, S.J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412, 169-172.

    10. Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn. 1990, 63, 988-992.

  • Metrics
    No metrics available
Share - Bookmark