Integrals of Bessel functions

Article, Preprint English OPEN
Babusci, D.; Dattoli, G.; Germano, B.; Martinelli, M. R.; Ricci, P. E.;
  • Publisher: Elsevier BV
  • Journal: Applied Mathematics Letters,volume 26,issue 3,pages351-354 (issn: 0893-9659)
  • Related identifiers: doi: 10.1016/j.aml.2012.10.003
  • Subject: 33 | Applied Mathematics | Mathematical Physics | Mathematics - Classical Analysis and ODEs
    arxiv: Mathematics::Classical Analysis and ODEs
    acm: MathematicsofComputing_NUMERICALANALYSIS | ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION

We use the operator method to evaluate a class of integrals involving Bessel or Bessel-type functions. The technique we propose is based on the formal reduction of these family of functions to Gaussians.
  • References (5)

    [1] D. Babusci, G. Dattoli, and M. Del Franco, Lectures on Mathematical Methods for Physics, Internal Report ENEA RT/2010/5837.

    [2] P. Appell, J. Kamp´e de F´eri´et, Fonctions Hyperg´eometriqu´es et Polynoˆmes d'Hermite, Gauthier-Villars, Paris (1926).

    [3] D. Babusci, G. Dattoli, G. H. E. Duchamp, K. G´orska, K. A. Penson, arXiv:1105.5967v1 [math.CA].

    [4] H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, Wiley, New York (1984).

    [5] L. C. Andrews. Special functions for Engineers and Applied Mathematicians. Mac Millan, New York (1985).

  • Metrics
    No metrics available
Share - Bookmark