Global analysis of multistrains SIS, SIR and MSIR epidemic models
 Publisher: Springer

Related identifiers: doi: 10.1007/s121900130693x 
Subject: [MATH.MATHDS] Mathematics [math]/Dynamical Systems [math.DS]  Lyapunov methods  [SDV.SPEE] Life Sciences [qbio]/Santé publique et épidémiologie  [ MATH.MATHDS ] Mathematics [math]/Dynamical Systems [math.DS]  [ SDV.SPEE ] Life Sciences [qbio]/Santé publique et épidémiologie  Global Stability  Competition  Boundary equilibria  [SDV.MHEP.MI]Life Sciences [qbio]/Human health and pathology/Infectious diseases  Nonlinear dynamical systems  Mathematics Subject Classification (2000): 34A34, 34D23, 34D40, 92D30  [SDV.SPEE]Life Sciences [qbio]/Santé publique et épidémiologie  [SDV.MHEP.MI] Life Sciences [qbio]/Human health and pathology/Infectious diseases  [MATH.MATHDS]Mathematics [math]/Dynamical Systems [math.DS]  [ SDV.MHEP.MI ] Life Sciences [qbio]/Human health and pathology/Infectious diseases

References
(32)
[1] A. S. Ackleh and L. J. S. Allen, Competitive exclusion and coexistence for pathogens in an epidemic model with variable population size, J. Math. Biol., 47, pp. 153{168 (2003).
[2] A. S. Ackleh and L. J. S. Allen, Competitive exclusion in sis and sir epidemic models with total cross immunity and densitydependent host mortality, Discrete Contin. Dyn. Syst. Ser. B, 5, pp. 175{188 (2005).
[3] R. A. Amstrong and R. McGehee, Competitive exclusion, The American Naturalist, 115, pp. 151{170 (1980).
[4] V. Andreasen, J. Lin, and S. A. Levin, The dynamics of cocirculating in uenza strains conferring partial crossimmunity, J. Math. Biol., 35 , pp. 825{842 (1997).
[5] V. Andreasen and A. Pugliese, Pathogen coexistence induced by densitydependent host mortality, J. Theoret. Biol., pp. 159{165 (1995).
[6] H. Bremermann and H. R. Thieme, A competitive exclusion principle for pathogen virulence, J. Math. Biol., pp. 179{190 (1989).
[7] C. CastilloChavez, W. Huang, and J. Li, Competitive exclusion in gonorrhea models and other sexually transmitted diseases, SIAM J. Appl. Math., 56, pp. 494{508 (1996).
[8] , Competitive exclusion and coexistence of multiple strains in an SIS STD model, SIAM J. Appl. Math., 59, pp. 1790{1811 (electronic) (1999).
[9] C. CastilloChavez and H. R. Thieme. Asymptotically autonomous epidemic models. In O. Arino, D. Axelrod, M. Kimmel, and M. Langlais, editors, Math. Pop. Dyn.: Analysis of heterogeneity, volume Vol. One: Theory of Epidemics, pages 33{50. Wuerz Pub, Winnipeg, Canada, 1995.
[10] T. Dhirasakdanon and H. R. Thieme, Persistence of vertically transmitted parasite strains which protect against more virulent horizontally transmitted strains, in Modeling and dynamics of infectious diseases, vol. 11 of Ser. Contemp. Appl. Math. CAM, Higher Ed. Press, Beijing, pp. 187{215 (2009).

Similar Research Results
(7)

Metrics
No metrics available

 Download from



Cite this publication