publication . Article . Other literature type . 2017

Diversity and carbon storage across the tropical forest biome

Sullivan; Martin J. P.; Talbot; Joey; Lewis; Simon L.; Phillips; Oliver L.; Qie; Lan; Begne; Serge K.; Chave; Jerome; Cuni-Sanchez; Aida; Hubau; Wannes; Lopez-Gonzalez; ...
Open Access English
  • Published: 17 Jan 2017
  • Publisher: NATURE PUBLISHING GROUP
Abstract
Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-Tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed ...
Subjects
free text keywords: Forest ecology, Tropical ecology, AFRICAN RAIN-FORESTS; TREE ALPHA-DIVERSITY; ABOVEGROUND BIOMASS; AMAZONIAN FORESTS; WOOD PRODUCTION; BIODIVERSITY; PRODUCTIVITY; CLIMATE; COMPLEMENTARITY; CONSERVATION, forêt tropicale, biome, stockage du carbone, biodiversité, diversité variétale, structure de la canopée, forêt amazonienne, Leerstoelgroep Bosecologie en bosbeheer, Bosecologie en Bosbeheer, PE&RC, Forest Ecology and Forest Management, BIODIVERSITY, PRODUCTIVITY, AFRICAN RAIN-FORESTS, TREE ALPHA-DIVERSITY, ABOVEGROUND BIOMASS, AMAZONIAN FORESTS, WOOD PRODUCTION, CLIMATE, COMPLEMENTARITY, CONSERVATION, tropical forest, [SDV]Life Sciences [q-bio], Forest ecology, Tropical ecology, Article, Carbon storage, Tropical forest biome, Biomass, Species identification, : Environmental sciences & ecology [Life sciences], : Sciences de l'environnement & écologie [Sciences du vivant], : Phytobiology (plant sciences, forestry, mycology...) [Life sciences], : Biologie végétale (sciences végétales, sylviculture, mycologie...) [Sciences du vivant], Phénomènes atmosphériques, Ecology and Environment, Earth and Environmental Sciences, TREE SPECIES RICHNESS, ALPHA-DIVERSITY, INCREASES, DOMINANCE, Multidisciplinary, Amazon rainforest, Ecosystem, Ecology, Climate change, Tropics, Geography, Agroforestry
Funded by
RCUK| Tropical Biomes in Transition
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: NE/D005590/1
  • Funding stream: NERC
,
RCUK| Amazon Integrated Carbon Analysis / AMAZONICA
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: NE/F005806/1
  • Funding stream: NERC
,
EC| GEOCARBON
Project
GEOCARBON
Operational Global Carbon Observing System
  • Funder: European Commission (EC)
  • Project Code: 283080
  • Funding stream: FP7 | SP1 | ENV
,
EC| AMAZALERT
Project
AMAZALERT
Raising the alert about critical feedbacks between climate and long-term land use change in the Amazon
  • Funder: European Commission (EC)
  • Project Code: 282664
  • Funding stream: FP7 | SP1 | ENV
,
RCUK| Climate change and the Amazon: assessing the impact of climate on tree growth using tree ring widths and isotopes
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: NE/I021160/1
  • Funding stream: NERC
54 references, page 1 of 4

1. Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401-406, doi: 10.1126/science.1251817 (2014).

2. oThmas, C. D. et al. Extinction risk from climate change. Nature 427, 145-148, doi: http://www.nature.com/nature/journal/v427/ n6970/suppinfo/nature02121_S1.html (2004).

3. ter Steege, H. et al. Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances 1, doi: 10.1126/sciadv.1500936 (2015).

4. Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827-832, doi: 10.1126/ science.aaa9932 (2015).

5. Moilanen, A. et al. Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Vol. 272 (2005).

6. Chape, S., Harrison, J., Spalding, M. & Lysenko, I. Measuring the extent and efectiveness of protected areas as an indicator for meeting global biodiversity targets. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 443-455, doi: 10.1098/ rstb.2004.1592 (2005).

7. Matthews, H. D. et al. National contributions to observed global warming. Environmental Research Letters 9, 014010 (2014).

8. United Nations Framework Convention on Climate Change. (ed. Conference of the Parties Twenty-first session) (2015).

9. Gardner, T. A. et al. A framework for integrating biodiversity concerns into national REDD+ programmes. Biol. Conserv. 154, 61-71, doi: 10.1016/j.biocon.2011.11.018 (2012).

10. oThmas, C. D. et al. Reconciling biodiversity and carbon conservation. Ecology Letters 16, 39-47, doi: 10.1111/ele.12054 (2013).

11. Ewers, R. M. & Rodrigues, A. S. L. Estimates of reserve eefctiveness are confounded by leakage. Trends in Ecology & Evolution 23, 113-116, doi: http://dx.doi.org/10.1016/j.tree.2007.11.008 (2008).

12. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59-67, doi: http://www.nature.com/nature/journal/ v486/n7401/abs/nature11148.html#supplementary-information (2012).

13. Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and Ecosystem Functioning. Annual Review of Ecology, Evolution, and Systematics 45, 471-493, doi: 10.1146/annurev-ecolsys-120213-091917 (2014).

14. Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72-76, doi: 10.1038/35083573 (2001). [OpenAIRE]

15. Morin, X., Fahse, L., Scherer-Lorenzen, M. & Bugmann, H. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecology Letters 14, 1211-1219, doi: 10.1111/j.1461-0248.2011.01691.x (2011). [OpenAIRE]

54 references, page 1 of 4
Abstract
Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-Tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed ...
Subjects
free text keywords: Forest ecology, Tropical ecology, AFRICAN RAIN-FORESTS; TREE ALPHA-DIVERSITY; ABOVEGROUND BIOMASS; AMAZONIAN FORESTS; WOOD PRODUCTION; BIODIVERSITY; PRODUCTIVITY; CLIMATE; COMPLEMENTARITY; CONSERVATION, forêt tropicale, biome, stockage du carbone, biodiversité, diversité variétale, structure de la canopée, forêt amazonienne, Leerstoelgroep Bosecologie en bosbeheer, Bosecologie en Bosbeheer, PE&RC, Forest Ecology and Forest Management, BIODIVERSITY, PRODUCTIVITY, AFRICAN RAIN-FORESTS, TREE ALPHA-DIVERSITY, ABOVEGROUND BIOMASS, AMAZONIAN FORESTS, WOOD PRODUCTION, CLIMATE, COMPLEMENTARITY, CONSERVATION, tropical forest, [SDV]Life Sciences [q-bio], Forest ecology, Tropical ecology, Article, Carbon storage, Tropical forest biome, Biomass, Species identification, : Environmental sciences & ecology [Life sciences], : Sciences de l'environnement & écologie [Sciences du vivant], : Phytobiology (plant sciences, forestry, mycology...) [Life sciences], : Biologie végétale (sciences végétales, sylviculture, mycologie...) [Sciences du vivant], Phénomènes atmosphériques, Ecology and Environment, Earth and Environmental Sciences, TREE SPECIES RICHNESS, ALPHA-DIVERSITY, INCREASES, DOMINANCE, Multidisciplinary, Amazon rainforest, Ecosystem, Ecology, Climate change, Tropics, Geography, Agroforestry
Funded by
RCUK| Tropical Biomes in Transition
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: NE/D005590/1
  • Funding stream: NERC
,
RCUK| Amazon Integrated Carbon Analysis / AMAZONICA
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: NE/F005806/1
  • Funding stream: NERC
,
EC| GEOCARBON
Project
GEOCARBON
Operational Global Carbon Observing System
  • Funder: European Commission (EC)
  • Project Code: 283080
  • Funding stream: FP7 | SP1 | ENV
,
EC| AMAZALERT
Project
AMAZALERT
Raising the alert about critical feedbacks between climate and long-term land use change in the Amazon
  • Funder: European Commission (EC)
  • Project Code: 282664
  • Funding stream: FP7 | SP1 | ENV
,
RCUK| Climate change and the Amazon: assessing the impact of climate on tree growth using tree ring widths and isotopes
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: NE/I021160/1
  • Funding stream: NERC
54 references, page 1 of 4

1. Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401-406, doi: 10.1126/science.1251817 (2014).

2. oThmas, C. D. et al. Extinction risk from climate change. Nature 427, 145-148, doi: http://www.nature.com/nature/journal/v427/ n6970/suppinfo/nature02121_S1.html (2004).

3. ter Steege, H. et al. Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances 1, doi: 10.1126/sciadv.1500936 (2015).

4. Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827-832, doi: 10.1126/ science.aaa9932 (2015).

5. Moilanen, A. et al. Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Vol. 272 (2005).

6. Chape, S., Harrison, J., Spalding, M. & Lysenko, I. Measuring the extent and efectiveness of protected areas as an indicator for meeting global biodiversity targets. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 443-455, doi: 10.1098/ rstb.2004.1592 (2005).

7. Matthews, H. D. et al. National contributions to observed global warming. Environmental Research Letters 9, 014010 (2014).

8. United Nations Framework Convention on Climate Change. (ed. Conference of the Parties Twenty-first session) (2015).

9. Gardner, T. A. et al. A framework for integrating biodiversity concerns into national REDD+ programmes. Biol. Conserv. 154, 61-71, doi: 10.1016/j.biocon.2011.11.018 (2012).

10. oThmas, C. D. et al. Reconciling biodiversity and carbon conservation. Ecology Letters 16, 39-47, doi: 10.1111/ele.12054 (2013).

11. Ewers, R. M. & Rodrigues, A. S. L. Estimates of reserve eefctiveness are confounded by leakage. Trends in Ecology & Evolution 23, 113-116, doi: http://dx.doi.org/10.1016/j.tree.2007.11.008 (2008).

12. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59-67, doi: http://www.nature.com/nature/journal/ v486/n7401/abs/nature11148.html#supplementary-information (2012).

13. Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and Ecosystem Functioning. Annual Review of Ecology, Evolution, and Systematics 45, 471-493, doi: 10.1146/annurev-ecolsys-120213-091917 (2014).

14. Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72-76, doi: 10.1038/35083573 (2001). [OpenAIRE]

15. Morin, X., Fahse, L., Scherer-Lorenzen, M. & Bugmann, H. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecology Letters 14, 1211-1219, doi: 10.1111/j.1461-0248.2011.01691.x (2011). [OpenAIRE]

54 references, page 1 of 4
Any information missing or wrong?Report an Issue