Exponential rarefaction of real curves with many components

Article, Preprint English OPEN
Gayet, Damien; Welschinger, Jean-Yves;
(2011)
  • Publisher: HAL CCSD
  • Journal: Publ. Math. Inst. Hautes \xc9\u0301tudes Sci. (issn: 0073-8301)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1007/s10240-011-0033-3
  • Subject: large deviations | positive currents | [ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG] | [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] | Mathematics - Algebraic Geometry | real maximal curves | 14P25, 32U40, 60F10
    arxiv: Mathematics::Symplectic Geometry

21 pages; Given a positive real Hermitian holomorphic line bundle L over a smooth real projective manifold X, the space of real holomorphic sections of the bundle L^d inherits for every positive integer d a L^2 scalar product which induces a Gaussian measure. When X is ... View more
  • References (19)
    19 references, page 1 of 2

    [1] R. Berman, B. Berndtsson, J. Sjo¨strand, A direct approach to Bergman kernel asymptotics for positive line bundles, Arkiv f¨or Matematik 46 (2008), no. 2, 1871-2487.

    [2] E. Bedford, M. Lyubich, J. Smillie, Polynomial diffeomorphisms of C2. IV. The measure of maximal entropy and laminar currents, Invent. Math. 112 (1993), no. 1, 77-125.

    [3] E. Catlin, The Bergman Kernel and a theorem of Tian, Analysis and geometry in several complex variables, G. Komatsu and M. Kuranishi, eds., Birkh¨auser, Boston, 1999.

    [4] H. de Th´elin, Sur la laminarit´e de certains courants, Ann. Sci. E´c. Norm. Sup´er. (4) 37 (2004), no. 2, 304-311 .

    [5] S. K. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996), no. 4, 666-705.

    [6] A. Edelman, E. Kostlan, How many zeros of a random polynomial are real?, Bull. of the A.M.S 32 (1995), 1-37.

    [7] D. Gayet, Symplectic real hypersurfaces and Lefschetz pencils, J. Symplectic Geom. 6, No. 3 (2008), 247-266.

    [8] P. Griffiths, J. Harris, Principles of algebraic geometry, Wiley-Interscience, New York, 1978.

    [9] A. Harnack, Ueber die Vieltheiligkeit der ebenen algebraischen Curven, Math. Ann. 10 (1876), no. 2, 189-198.

    [10] N. Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195 (1972), 149-158.

  • Related Organizations (1)
  • Metrics
Share - Bookmark