Exponential functionals of Brownian motion, I: Probability laws at fixed time

Preprint, Other literature type English OPEN
Matsumoto, Hiroyuki; Yor, Marc;
(2005)
  • Publisher: The Institute of Mathematical Statistics and the International Statistical Institute/Bernoulli Society
  • Journal: issn: 1549-5787
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1214/154957805100000159
  • Subject: Lamperti’s relation | Bessel process | Brownian motion | Mathematics - Probability | 60J65 (Primary) | Hartman-Watson distributions | 60J65
    arxiv: Mathematics::Probability

This paper is the first part of our survey on various results about the distribution of exponential type Brownian functionals defined as an integral over time of geometric Brownian motion. Several related topics are also mentioned.
  • References (71)
    71 references, page 1 of 8

    [1] Alili, L. Matsumoto, H. and Shiraishi, T. (2001). On a triplet of exponential Brownian functionals, in S´eminaire de Probabilit´es XXXV, 396-415, Lecture Notes in Math., 1755, Springer-Verlag. MR1837300

    [2] Alili, L., Dufresne, D. and Yor, M. (1997). Sur l'identit´e de Bougerol pour les fonctionnelles exponentielles du mouvement brownien avec drift, in [71].

    [3] Alili, L. and Gruet, J.-C. (1997). An explanation of a generalized Bougerol's identity in terms of hyperbolic Brownian motion, in [71].

    [4] Baldi, P. Casadio Tarabusi, E., Fig`a-Talamanca, A. and Yor, M. (2001). Non-symmetric hitting distributions on the hyperbolic half-plane and subordinated perpetuities, Rev. Mat. Iberoamericana, 17, 587-605. MR1900896

    [5] Barrieu, P., Rouault, A. and Yor, M. (2004). A study of the HartmanWatson distribution motivated by numerical problems related to the pricing of Asian options, J. Appl. Prob., 41, 1049-1058. MR2122799

    [6] Bertoin, J. and Yor, M. (2002). On the entire moments of self-similar Markov processes and exponential functionals of certain L´evy processes, Ann. Fac. Sci. Toulouse S´erie 6, XI, 33-45.

    [7] Bertoin, J. and Yor, M. (2005). Exponential functionals of L´evy processes, Probability Surveys, 2, 191-212.

    [8] Bhattacharya, R., Thomann, E. and Waymire, E. (2001). A note on the distribution of integrals of geometric Brownian motion, Stat. Probabil. Lett., 55, 187-192. MR1869859

    [9] Borodin, A. and Salminen, P. (2002). Handbook of Brownian Motion - Facts and Formulae, 2nd Ed., Birkh¨auser.

    [10] Borodin, A. and Salminen, P. (2004). On some exponential integral functionals of BM(μ) and BES(3), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov, 311, 51-78. MR2092200

  • Related Organizations (1)
  • Metrics
Share - Bookmark