publication . Preprint . Article . Other literature type . 2016

Eternal Hilltop Inflation

Wan-Il Park; William H. Kinney; Gabriela Barenboim;
Open Access English
  • Published: 13 May 2016
Abstract
We consider eternal inflation in hilltop-type inflation models, favored by current data, in which the scalar field in inflation rolls off of a local maximum of the potential. Unlike chaotic or plateau-type inflation models, in hilltop inflation the region of field space which supports eternal inflation is finite, and the expansion rate $H_{EI}$ during eternal inflation is almost exactly the same as the expansion rate $H_*$ during slow roll inflation. Therefore, in any given Hubble volume, there is a finite and calculable expectation value for the lifetime of the "eternal" inflation phase, during which quantum flucutations dominate over classical field evolution....
Subjects
arXiv: General Relativity and Quantum CosmologyAstrophysics::Cosmology and Extragalactic Astrophysics
free text keywords: Astrophysics - Cosmology and Nongalactic Astrophysics, Astronomy and Astrophysics, Scalar field, Keynesian economics, Spacetime, Physics, Classical mechanics, Inflation, media_common.quotation_subject, media_common, Slow roll, Inflationary epoch, Eternal inflation, Space time, Hubble volume
Funded by
EC| InvisiblesPlus
Project
InvisiblesPlus
InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
,
EC| ELUSIVES
Project
ELUSIVES
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
,
EC| INVISIBLES
Project
INVISIBLES
INVISIBLES
  • Funder: European Commission (EC)
  • Project Code: 289442
  • Funding stream: FP7 | SP3 | PEOPLE
,
NSF| Physics at the Frontier: Collider and Cosmology
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1417317
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Physics
60 references, page 1 of 4

[1] A. A. Starobinsky, Phys. Lett. B91, 99 (1980).

[2] K. Sato, Phys. Lett. B99, 66 (1981).

[3] K. Sato, Mon. Not. Roy. Astron. Soc. 195, 467 (1981).

[4] D. Kazanas, Astrophys. J. 241, L59 (1980).

[5] A. H. Guth, Phys. Rev. D23, 347 (1981).

[6] A. D. Linde, Phys. Lett. B108, 389 (1982).

[7] A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).

[8] A. A. Starobinsky, JETP Lett. 30, 682 (1979), [Pisma Zh. Eksp. Teor. Fiz.30,719(1979)].

[9] V. F. Mukhanov and G. V. Chibisov, JETP Lett. 33, 532 (1981), [Pisma Zh. Eksp. Teor. Fiz.33,549(1981)].

[10] V. F. Mukhanov (2003), astro-ph/0303077.

[11] A. D. Linde, Phys. Lett. B129, 177 (1983).

[12] S. W. Hawking, Phys. Lett. B115, 295 (1982).

[13] S. W. Hawking and I. G. Moss, Nucl. Phys. B224, 180 (1983).

[14] A. A. Starobinsky, Phys. Lett. B117, 175 (1982).

[15] A. H. Guth and S. Y. Pi, Phys. Rev. Lett. 49, 1110 (1982).

60 references, page 1 of 4
Any information missing or wrong?Report an Issue