On the impact of quantum computing technology on future developments in highperformance scientific computing

Related identifiers: doi: 10.1007/s1067601794380 
Subject: Computer Science  Computational Engineering, Finance, and Science  65Y10  Computer Science  Computers and Society  Mathematics  Numerical Analysis

References
(72)
Ambainis, A. (2010) Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv:1010.4458v2.
American National Standards Institute (ed.). (1986). American National Standard for Information Systems Coded Character Sets 7Bit American Standard Code for Information Interchange (7Bit ASCII) ANSI X3.41986. (ANSI INCITS 41986 (R2002)).
Ashby, S., Beckman, P., Chen, J., Colella, P., Collins, B., Crawford, D., Dongarra, J., Kothe, D., Lusk, R., Messina, P., Mezzacappa, T., Moin, P., Norman, M., Rosner, R., Sarkar, V., Siegel, A., Streitz, F., White, A. & Wright, M. (2010). The opportunities and challenges of exascale computing, summary report of the Advanced Scientic Computing Advisory Committee (ASCAC) Subcommittee, Fall 2010. Retrieved from https://science.energy.gov/~/media/ ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf.
AspuruGuzik, A., Van Dam, W., Farhi, E., Gaitan, F., Humble, T., Jordan, S., et al. (2015). In ASCR workshop on quantum computing for science. doi:10.2172/1194404.
Balensiefer, S., KregorStickles, L., & Oskin, M. (2005). An evaluation framework and instruction set architecture for iontrap based quantum microarchitectures. ACM SIGARCH Computer Architecture News, 33(2), 186196. doi:10.1145/1080695.1069986.
Bennett, C. H. (1973). Logical reversibility of computation. IBM Journal of Research and Development Archive, 17(6), 525532. doi:10.1147/rd.176.0525.
Bergmann, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M., Franzon, P., Harrod, W., Hill, K., Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R., Richards, M., Scarpelli, A., Scott, S., Snavely, A., Sterling, T., Stanley, R. & Yelick, W. K. (2008). Exascale computing study: Technology challenges in achieving exascale systems. Retrieved from http://www.sdsc. edu/~allans/Exascale_final_report.pdf.
Berry, D.W., Childs, A.M., Ostrander, A. & Wang, G. (2017). Quantum algorithm for linear diferential equations with exponentially improved dependence on precision. arXiv:1701.03684.
Berry, D. W. (2014). Highorder quantum algorithm for solving linear diferential equations. Journal of Physics A: Mathematical and Theoretical, 47, 105301. doi:10.1088/17518113/47/10/105301.
Brandl, M.F. (2017) A quantum von Neumann architecture for largescale quantum computing in systems with long coherence times, such as trapped ions. arXiv:1702.02583.
 Related Research Results (1)

Metrics
No metrics available

 Download from



Cite this publication