Share  Bookmark

 Download from




[1] H. Busch, Berechnung der Bahn von Kathodenstrahlen in axial symmetrischen electromagnetischen Felde, Z. Phys. 81 (5) p. 974, (1926).
[2] M. Reiser, Theory and Design of Charged Particle Beams, WileyVCH, Weinheim, 2008, 2nd ed., Chapter 2.
[3] S.E. Tsimring, Electron Beams and Microwave Vacuum Electronics, John Wiley & Sons, Inc., Hoboken, 2007, Chapters 1 and 3.
[4] P.T. Kirstein, G.S. Kino, W.E. Waters, Space Charge Flow, McGrawHill Inc., New York, U.S.A., 1967, p. 14.
[5] A.J. Dragt, General moment invariants for linear Hamiltonian systems, Phys. Rev. A 45, 4 (1992).
[6] K. Floettmann, Some basic features of the beam emittance, Phys. Rev. ST Accel. Beams 6, 034202 (2013).
[7] Emittance definitions assume monoenergetic beams and refer to fixed position s0 rather to fixed time t0. The particle angle u′ and its transverse mechanical momentum Pu := mγvu are related through Pu = p · u′, where p is the longitudinal mechanical momentum, which is the same for each particle.
[8] C. Xiao, L. Groening, O. Kester, H. Leibrock, M. Maier, and C. Mu¨hle, Singleknob beam line for transverse emittance partitioning, Phys. Rev. ST Accel. Beams 16, 044201 (2013).
[9] R. Brinkmann, Y. Derbenev, K. Flo¨ttman, A low emittance, flatbeam electron source for linear colliders, DESY TESLA9909, (1999).
[10] R. Brinkmann, Y. Derbenev, and K. Flo¨ttmann, A low emittance, flatbeam electron source for linear colliders, Phys. Rev. ST Accel. Beams 4, 053501 (2001).