Extension of Busch’s theorem to particle beams

Article, Preprint English OPEN
Groening, L.; Chung, M.; Xiao, C.;
(2017)

In 1926, H. Busch formulated a theorem for one single charged particle moving along a region with a longitudinal magnetic field [H. Busch, Berechnung der Bahn von Kathodenstrahlen in axial symmetrischen electromagnetischen Felde, Z. Phys. 81, 974 (1926)ZEPYAA0044-3328].... View more
  • References (20)
    20 references, page 1 of 2

    [1] H. Busch, Berechnung der Bahn von Kathodenstrahlen in axial symmetrischen electromagnetischen Felde, Z. Phys. 81 (5) p. 974, (1926).

    [2] M. Reiser, Theory and Design of Charged Particle Beams, Wiley-VCH, Weinheim, 2008, 2nd ed., Chapter 2.

    [3] S.E. Tsimring, Electron Beams and Microwave Vacuum Electronics, John Wiley & Sons, Inc., Hoboken, 2007, Chapters 1 and 3.

    [4] P.T. Kirstein, G.S. Kino, W.E. Waters, Space Charge Flow, McGraw-Hill Inc., New York, U.S.A., 1967, p. 14.

    [5] A.J. Dragt, General moment invariants for linear Hamiltonian systems, Phys. Rev. A 45, 4 (1992).

    [6] K. Floettmann, Some basic features of the beam emittance, Phys. Rev. ST Accel. Beams 6, 034202 (2013).

    [7] Emittance definitions assume mono-energetic beams and refer to fixed position s0 rather to fixed time t0. The particle angle u′ and its transverse mechanical momentum Pu := mγvu are related through Pu = p · u′, where p is the longitudinal mechanical momentum, which is the same for each particle.

    [8] C. Xiao, L. Groening, O. Kester, H. Leibrock, M. Maier, and C. Mu¨hle, Single-knob beam line for transverse emittance partitioning, Phys. Rev. ST Accel. Beams 16, 044201 (2013).

    [9] R. Brinkmann, Y. Derbenev, K. Flo¨ttman, A low emittance, flat-beam electron source for linear colliders, DESY TESLA-99-09, (1999).

    [10] R. Brinkmann, Y. Derbenev, and K. Flo¨ttmann, A low emittance, flat-beam electron source for linear colliders, Phys. Rev. ST Accel. Beams 4, 053501 (2001).

  • Metrics
Share - Bookmark