Share  Bookmark

 Download from



 Funded by

[1] M. Dalai, “Elias Bound for General Distances and Stable Sets in EdgeWeighted Graphs,” IEEE Trans. Inform. Theory, vol. 61, no. 5, pp. 2335 2350, May 2015.
[2] C. E. Shannon, “The ZeroError Capacity of a Noisy Channel,” IRE Trans. Inform. Theory, vol. IT2, pp. 819, 1956.
[3] L. Lova´sz, “On the Shannon Capacity of a Graph,” IEEE Trans. Inform. Theory, vol. 25, no. 1, pp. 17, 1979.
[4] M. Aaltonen, “A new upper bound on nonbinary block codes,” Discrete Mathematics, vol. 83, no. 2, pp. 139160, 1990.
[5] M. A. Tsfasman, S. Vla˘dut, and T. Zink, “Modular curves, Shimura curves, and Goppa codes, better than VarshamovGilbert bound,” Mathematische Nachrichten, vol. 109, no. 1, pp. 2128, 1982.
[6] D. B. West, Introduction to graph theory. Prentice Hall Upper Saddle River, 2001, vol. 2.
[7] N. Alon and J. H. Spencer, “Tura´n's theorem,” in The probabilistic method. John Wiley & Sons, 2004, pp. 9596.
[8] A. Schrijver, “A comparison of the Delsarte and Lova´sz bounds,” IEEE Trans. on Inform. Theory, vol. 25, no. 4, pp. 425  429, jul 1979.
[9] M. Navon and A. Samorodnitsky, “On Delsarte's linear programming bounds for binary codes,” in Proc. 46th Annual IEEE Symp.Found. Comp. Sci. (FOCS). IEEE Computer Society, 2005, pp. 327338.
[10] R. McEliece, E. Rodemich, H. Rumsey, and L. Welch, “New upper bounds on the rate of a code via the DelsarteMacWilliams inequalities,” Information Theory, IEEE Transactions on, vol. 23, no. 2, pp. 157  166, mar 1977.