Strong deflection lensing by a Lee–Wick black hole

Article English OPEN
Zhao, Shan-Shan; Xie, Yi;
(2017)

We study strong deflection gravitational lensing by a Lee–Wick black hole, which is a non-singular black hole generated by a high derivative modification of Einstein–Hilbert action. The strong deflection lensing is expected to produce a set of relativistic images very c... View more
  • References (46)
    46 references, page 1 of 5

    [1] J. Bardeen, Non-singular general-relativistic gravitational collapse, in: Proceedings of International Conference GR5, Tbilisi University Press, Tbilisi, USSR, 1968, p. 174.

    [2] K.S. Stelle, Renormalization of higher-derivative quantum gravity, Phys. Rev. D 16 (1977) 953-969, http://dx.doi.org/10.1103/PhysRevD.16.953.

    [3] L. Modesto, Super-renormalizable quantum gravity, Phys. Rev. D 86 (4) (2012) 044005, http://dx.doi.org/10.1103/PhysRevD.86.044005, arXiv:1107.2403.

    [4] L. Modesto, L. Rachwał, Super-renormalizable and finite gravitational theories, Nucl. Phys. B 889 (2014) 228-248, http://dx.doi.org/10.1016/j.nuclphysb.2014. 10.015, arXiv:1407.8036.

    [5] C. Bambi, D. Malafarina, L. Modesto, Terminating black holes in asymptotically free quantum gravity, Eur. Phys. J. C 74 (2014) 2767, http://dx.doi.org/10.1140/ epjc/s10052-014-2767-9, arXiv:1306.1668.

    [6] Y. Zhang, Y. Zhu, L. Modesto, C. Bambi, Can static regular black holes form from gravitational collapse?, Eur. Phys. J. C 75 (2015) 96, http://dx.doi.org/10.1140/ epjc/s10052-015-3311-2, arXiv:1404.4770.

    [7] V.P. Frolov, Information loss problem and a 'black hole' model with a closed apparent horizon, J. High Energy Phys. 05 (2014) 49, http://dx.doi.org/10.1007/ JHEP05(2014)049, arXiv:1402.5446.

    [8] V.P. Frolov, A. Zelnikov, T. de Paula Netto, Spherical collapse of small masses in the ghost-free gravity, J. High Energy Phys. 06 (2015) 107, http://dx.doi.org/ 10.1007/JHEP06(2015)107, arXiv:1504.00412.

    [9] E.T. Tomboulis, Renormalization and unitarity in higher derivative and nonlocal gravity theories, Mod. Phys. Lett. A 30 (2015) 1540005, http://dx.doi.org/ 10.1142/S0217732315400052.

    [10] E.T. Tomboulis, Nonlocal and quasilocal field theories, Phys. Rev. D 92 (12) (2015) 125037, http://dx.doi.org/10.1103/PhysRevD.92.125037, arXiv:1507. 00981.

  • Similar Research Results (4)
  • Metrics
Share - Bookmark