Share  Bookmark

 Download from



 Funded by

[1] Albert, R. and A.L. Barabasi (2002), Statistical mechanics of complex networks, Rev. Mod. Phys. 74, 4797.
[2] Badii, R. and A. Politi (1997), Complexity: Hierarchical Structures and Scaling in Physics, Cambridge University Press, 318 pp.
[3] La Barbera, P. and R. Rosso (1987), Fractal geometry of river networks, EOS Trans. AGU, 68(44), 1276.
[4] Blanter, E. M., M. G. Shnirman, J. L. LeMouel, and C. J. Allegre (1997), Scaling laws in blocks dynamics and dynamic selforganized criticality, Phys. Earth Planet. Inter., 99(34), 295307.
[5] Blanter, E. M., M. G. Shnirman, and J. L. LeMouel (1997), Hierarchical model of seismicity: scaling and predictability, Phys. Earth Planet. Inter., 103(12), 135150.
[6] Boltzmann, L. (1896), Vorlesungen u¨berGastheorie, Bands I, II.
[7] Bogolyubov, N. N. (1960), Problems of Dynamic Theory in Statistical Physics, Oak Ridge, Tenn., Technical Information Service.
[8] Burd, G. A., E. C. Waymire, and R. D. Winn (2000), A selfsimilar invariance of critical binary galtonwatson trees. Bernoulli, 6(1), 121.
[9] da Costa, F. P., Grinfeld, M., Wattis, J. A. D. (2002), A hierarchical cluster system based on HortonStrahler rules for river networks, Studies Appl. Math., 109(3), 163 204.
[10] Dodds, P.S. and D.H. Rothman (2000), Scaling, Universality, and Geomorphology, Annual Review of Earth and Planetary Sciences, 28, 571610, doi:10.1146/annurev.earth.28.1.571.