Fast and inexpensive method for the fabrication of transparent pressure-resistant microfluidic chips

Article English OPEN
Martin, Alexandre; Teychené, Sébastien; Camy, Séverine; Aubin, Joelle;
  • Publisher: Springer Verlag (Germany)
  • Journal: Microfluidics and Nanofluidics (issn: 1613-4982)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1007/s10404-016-1757-7
  • Subject: Visualization | Supercritical | Fabrication | Génie des procédés | CO2 | [SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering | Génie chimique | Microchip | [CHIM.GENI]Chemical Sciences/Chemical engineering | High pressure

International audience; The recent rise of high-pressure applications in microfluidics has led to the development of different types of pressure-resistant microfluidic chips. For the most part, however, the fabrication methods require clean room facilities, as well as s... View more
  • References (36)
    36 references, page 1 of 4

    Abadie T, Aubin J, Legendre D, Xuereb C (2012) Hydrodynamics of gas-liquid Taylor flow in rectangular microchannels. Microfluid. Nanofluidics 12:355-369. doi:10.1007/s10404-011-0880-8

    Bartolo D, Degré G, Nghe P, Studer V (2008) Microfluidic stickers. Lab Chip 8:274-279

    Benito-Lopez F, Verboom W, Kakuta M, Gardeniers JGE, Egberink RJM, Oosterbroek ER, van den Berg A, Reinhoudt DN (2005) Optical fiber-based on-line UV/Vis spectroscopic monitoring of chemical reaction kinetics under high pressure in a capillary microreactor. Chem Commun. doi:10.1039/b500429b

    Benito-Lopez F, Tiggelaar RM, Salbut K, Huskens J, Egberink RJM, Reinhoudt DN, Gardeniers HJGE, Verboom W (2007) Substantial rate enhancements of the esterification reaction of phthalic anhydride with methanol at high pressure and using supercritical CO2 as a co-solvent in a glass microreactor. Lab Chip 7:1345. doi:10.1039/b703394j

    Benito-López F, Egberink RJM, Reinhoudt DN, Verboom W (2008) High pressure in organic chemistry on the way to miniaturization. Tetrahedron 64:10023-10040. doi:10.1016/j. tet.2008.07.108

    Blanch-Ojea R, Tiggelaar RM, Pallares J, Grau FX, Gardeniers JGE (2012) Flow of CO2-ethanol and of CO2-methanol in a nonadiabatic microfluidic T-junction at high pressures. Microfluid. Nanofluidics 12:927-940. doi:10.1007/s10404-011-0927-x

    Carlborg CF, Haraldsson T, Öberg K, Malkoch M, van der Wijngaart W (2011) Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices. Lab Chip 11:3136. doi:10.1039/c1lc20388f

    Dorobantu Bodoc M, Prat L, Xuereb C, Gourdon C, Lasuye T (2012) Online monitoring of vinyl chloride polymerization in a microreactor using Raman spectroscopy. Chem Eng Technol 35:705- 712. doi:10.1002/ceat.201100564

    Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 6:437. doi:10.1039/b510841a

    Gothsch T, Schilcher C, Richter C, Beinert S, Dietzel A, Büttgenbach S, Kwade A (2015) High-pressure microfluidic systems (HPMS): flow and cavitation measurements in supported silicon microsystems. Microfluid. Nanofluidics 18:121-130. doi:10.1007/ s10404-014-1419-6

  • Similar Research Results (4)
  • Related Organizations (1)
  • Metrics
Share - Bookmark