Scalar evolution equations for shear waves in incompressible solids: a simple derivation of the Z, ZK, KZK and KP equations

Article, Preprint English OPEN
Destrade, Michel ; Goriely, Alain ; Saccomandi, Giuseppe (2011)
  • Publisher: ROYAL SOC
  • Journal: PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES (issn: 1364-5021)
  • Related identifiers: doi: 10.1098/rspa.2010.0508
  • Subject: Mathematical Physics | Condensed Matter - Soft Condensed Matter

We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent, and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be... View more
  • References (21)
    21 references, page 1 of 3

    [1] Adkins, J.E. 1954 Some generalizations of the shear problem for isotropic incompressible materials. Proc. Camb. Phil. Soc. 50, 334-345.

    [2] Bruzon, M.S., Gandarias, M.L., Torrisi, M. & Tracina┬┤, R. 2009 Some travelling wave solutions for the dissipative Zabolotskaya-Khokhlov equation. J. Math. Phys. 40, 103 504.

    [3] Cates, A.T. & Crighton, D.G. 1990 Nonlinear diffraction and caustic formation. Proc. Roy. Soc. A 430, 69-88.

    [4] Cramer, M.S. & Andrews, M.F. 2003 A modified Khokhlov-Zabolotskaya equation governing shear waves in prestrained hyperelastic solids. J. Acoust. Soc. Am. 114, 1821-1832.

    [5] Destrade, M., Gilchrist, M.D. & Murphy, J.G. 2010 Onset of nonlinearity in the elastic bending of beams, ASME J. Appl. Mech. 77, 061 015.

    [6] Destrade, M. & Saccomandi, G. 2006 Solitary and compactlike shear waves in the bulk of solids, Phys. Rev. E 73, 065604.

    [7] Enflo, B.O., Hedberg, C.M. & Rudenko, O.V. 2006 Standing and propagating waves in cubically nonlinear media. AIP Conf. Proc. 834, 187- 195.

    [8] Fosdick, R.L. & Yu J.H. 1996 Thermodynamics, stability and non-linear oscillations of viscoelastic solids I. Differential type solids of second grade. Int. J. Non-Linear Mech. 31, 495-516.

    [9] Hayes, M.A. & Saccomandi, G. 2004 Antiplane shear motions for viscoelastic Mooney-Rivlin materials. Q. J. Mech. Appl. Math. 57, 379- 392.

    [10] Horgan, C.O. & Saccomandi, G. 2003 Helical shear for hardening generalized neo-Hookean elastic materials Math. Mech. Solids 8, 539-559.

  • Metrics
    No metrics available
Share - Bookmark