publication . Article . Preprint . 2014

Physical Limitations to the Spatial Resolution of Solid-State Detectors

Boronat, M.; Marinas, C.; Frey, A.; Garcia, I.; Schwenker, B.; Vos, M.; Wilk, F.;
Open Access
  • Published: 17 Apr 2014 Journal: IEEE Transactions on Nuclear Science, volume 62, pages 381-386 (issn: 0018-9499, eissn: 1558-1578, Copyright policy)
  • Publisher: Institute of Electrical and Electronics Engineers (IEEE)
Abstract
In this paper we explore the effect of $\delta$-ray emission, fluctuations in th e signal deposition on the detection of charged particles in silicon-based detec tors. We show that these two effects ultimately limit the resolution that can be achieved by interpolation of the signal in finely segmented position-sensitive solid-state devices.
Subjects
free text keywords: Detectors and Experimental Techniques, Advanced infrastructures for detector R&D [9], Precision Pixel Detectors [9.3], Trajectory, Image resolution, Nuclear magnetic resonance, Charged particle, Electronic engineering, Silicon, chemistry.chemical_element, chemistry, Physics, Deposition (law), Solid-state, Detector, Interpolation, Physics - Instrumentation and Detectors, High Energy Physics - Experiment
Funded by
EC| AIDA
Project
AIDA
Advanced European Infrastructures for Detectors at Accelerators
  • Funder: European Commission (EC)
  • Project Code: 262025
  • Funding stream: FP7 | SP4 | INFRA
25 references, page 1 of 2

[1] G. Aad et al., “The ATLAS Experiment at the CERN Large Hadron Collider,” JINST, vol. 3, p. S08003, 2008.

[2] S. Chatrchyan et al., “The CMS experiment at the CERN LHC,” JINST, vol. 3, p. S08004, 2008.

[3] F. Campabadal, C. Fleta, M. Key, M. Lozano, C. Martinez et al., “Beam tests of ATLAS SCT silicon strip detector modules,” Nucl.Instrum.Meth., vol. A538, pp. 384-407, 2005. [OpenAIRE]

[4] R. Turchetta, “Spatial resolution of silicon microstrip detectors,” Nucl.Instrum.Meth., vol. A335, pp. 44-58, 1993.

[5] J. Beringer et al., “Review of Particle Physics (RPP),” Phys.Rev., vol. D86, p. 010001, 2012.

[6] F. Antinori, D. Barberis, W. Beusch, M. Dameri, J. Dufey et al., “Results on a 10-micron pitch detector with individual strip readout,” Nucl.Instrum.Meth., vol. A288, pp. 82-86, 1990.

[7] J. Straver, O. Toker, P. Weilhammmer, C. Colledani, W. Dulinski et al., “1-micron spatial resolution with silicon strip detectors,” Nucl.Instrum.Meth., vol. A348, pp. 485-490, 1994. [OpenAIRE]

[8] K. Abe, A. Arodzero, C. Baltay, J. Brau, M. Breidenbach et al., “Design and performance of the SLD vertex detector, a 307 Mpixel tracking system,” Nucl.Instrum.Meth., vol. A400, pp. 287-343, 1997.

[9] K. Akiba, M. Artuso, R. Badman, A. Borgia, R. Bates et al., “Charged Particle Tracking with the Timepix ASIC,” Nucl.Instrum.Meth., vol. A661, pp. 31-49, 2012.

[10] M. Winter, J. Baudot, A. Besson, G. Claus, A. Dorokhov et al., “Development of CMOS Pixel Sensors fully adapted to the ILD Vertex Detector Requirements,” 2012. [OpenAIRE]

[11] L. Andricek, J. Caride, Z. Dolezal, Z. Drasal, S. Esch et al., “Intrinsic resolutions of DEPFET detector prototypes measured at beam tests,” Nucl.Instrum.Meth., vol. A638, pp. 24-32, 2011. [OpenAIRE]

[12] J. Velthuis, Z. Drasal, D. Scheirich, Z. Dolezal, P. Kodys et al., “A DEPFET based beam telescope with submicron precision capability,” IEEE Trans.Nucl.Sci., vol. 55, pp. 662-666, 2008. [OpenAIRE]

[13] M. Battaglia, D. Bisello, D. Contarato, P. Denes, P. Giubilato et al., “Characterisation of a Pixel Sensor in 0.20 micron SOI Technology for Charged Particle Tracking,” Nucl.Instrum.Meth., vol. A654, pp. 258- 265, 2011.

[14] J. Kemmer and G. Lutz, “New detector concepts,” Nucl.Instrum.Meth., vol. A253, pp. 365-377, 1987.

[15] O. Alonso et al., “DEPFET active pixel detectors for a future linear e+e collider,” 2012.

25 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue