Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system

Article, Preprint English OPEN
Kuznetsov, Nikolay; Leonov, G. A.; Mokaev, T. N.; Prasad, A.; Shrimali, M. D.;
(2015)
  • Publisher: Springer
  • Related identifiers: doi: 10.1007/s11071-018-4054-z
  • Subject: Nonlinear Sciences - Chaotic Dynamics | perpetual points | hidden attractors | adaptive algorithms | finite-time Lyapunov exponents | Lyapunov dimension
    arxiv: Mathematics::Dynamical Systems | Nonlinear Sciences::Chaotic Dynamics

The Rabinovich system, describing the process of interaction between waves in plasma, is considered. It is shown that the Rabinovich system can exhibit a hidden attractor in the case of multistability as well as a classical self-excited attractor. The hidden attractor i... View more
  • References (51)
    51 references, page 1 of 6

    [1] M. Rabinovich, Stochastic autooscillations and turbulence, Uspehi Physicheskih Nauk [in Russian] 125 (1) (1978) 123-168.

    [2] A. S. Pikovski, M. I. Rabinovich, V. Y. Trakhtengerts, Onset of stochasticity in decay confinement of parametric instability, Sov. Phys. JETP 47 (1978) 715-719.

    [3] G. A. Leonov, V. A. Boichenko, Lyapunov's direct method in the estimation of the Hausdorff dimension of attractors, Acta Applicandae Mathematicae 26 (1) (1992) 1-60.

    [4] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (2) (1963) 130-141.

    [5] A. B. Glukhovskii, F. V. Dolzhanskii, Three-component geostrophic model of convection in a rotating fluid, Academy of Sciences, USSR, Izvestiya, Atmospheric and Oceanic Physics 16 (1980) 311-318.

    [6] G. G. Denisov, On the rigid body rotation in resisting medium, Izv. Akad. Nauk SSSR: Mekh. Tverd. Tela 4 (1989) 37-43, (in Russian).

    [7] A. B. Glukhovsky, Nonlinear systems in the form of gyrostat superpositions, Doklad. Akad. Nauk SSSR 266 (1982) 816-820, (in Russian).

    [8] A. B. Glukhovsky, On systems of coupled gyrostat in problems of geophysical hydrodynamics, Izv. Akad. Nauk SSSR: Fiz. Atmos. i Okeana 22 (1986) 701-711, (in Russian).

    [9] M. A. Zaks, D. V. Lyubimov, V. I. Chernatynsky, On the influence of vibration upon the regimes of overcritical convection, Izv. Akad. Nauk SSSR: Fiz. Atmos. i Okeana 19 (1983) 312-314, (in Russian).

    [10] V. A. Dovzhenko, F. V. Dolzhansky, Generating of the vortices in shear flows. Theory and experiment, Nauka, Moscow, 1987, (in Russian).

  • Related Organizations (3)
  • Metrics
Share - Bookmark