Multicollinearity and maximum entropy leuven estimator

Article OPEN
Sougata Poddar;
(2004)
  • Journal: Economics Bulletin,volume 3,issue 25,pages1-11
  • Subject: maximum entropy
    • jel: jel:C1

Multicollinearity is a serious problem in applied regression analysis. Q. Paris (2001) introduced the MEL estimator to resolve the multicollinearity problem. This paper improves the MEL estimator to the Modular MEL (MMEL) estimator and shows by Monte Carlo experiments t... View more
  • References (11)
    11 references, page 1 of 2

    1. Belsley, DA, E Kuh & RE Welsch (1980). Regression Diagnostics, Identifying Influential Data and Sources of Collinearity, Wiley, New York.

    2. Fröberg, CE (1965). Introduction to Numerical Analysis, Addison-Wesley, London.

    3. Georgescu-Roegen, N (1971). The Entropy Law and The Economic Process, Harvard Univ. Press, Cambridge, Mass.

    4. Golan, A, G George & D Miller (1996). Maximum Entropy Econometrics, Wiley, London.

    5. Hoerl, AE & RW Kennard (1970). “Ridge Regression: Biased Estimation for NonOrthogonal Problems”, Technometrics, pp. 55-68.

    6. Hoerl, AE & RW Kennard (1970). “Ridge Regression: Applications to Non-Orthogonal Problems”, Technometrics, pp. 69-82.

    7. Krishnamurthy, EV & SK Sen (1976). Computer-Based Numerical Algorithms, Affiliated East-West Press, New Delhi.

    8. Paris, Q (2001). “Multicollinearity and Maximum Entropy Estimator”, Economics Bulletin, 3(11), pp. 1-9.

    9. Theil, H (1971). Principles of Econometrics, Wiley, New York.

    10. Theobald, CM (1974). “Generalizations of Mean Square Error Applied to Ridge Regression”, J. of the Royal Stat. Soc., Series B, 36, pp. 103-106.

  • Metrics
Share - Bookmark