35 references, page 1 of 4 [1] A. Ambainis. Probabilistic and team PFIN-type learning: General properties. In Proceedings of the Ninth Annual Conference on Computational Learning Theory, pages 157-168. ACM Press, 1996.

[2] A. Ambainis. General oracle results for finite learning. Unpublished, 1998.

[3] A. Ambainis, K. Aps¯ıtis, R. Freivalds, W. Gasarch, and C. H. Smith. Team learning as a game. In Ming Li and Akira Maruoka, editors, Proceedings of the 8th International Workshop on Algorithmic Learning Theory (ALT-97), volume 1316 of LNAI, pages 2-17, Berlin, October 6-8 1997. Springer.

[4] A. Ambainis, K. Aps¯ıtis, R. Freivalds, and C. H. Smith. Hierarchies of probabilistic and team fin-learning. Theoretical Computer Science, 1999. to appear.

[5] D. Angluin and C. Smith. A survey of inductive inference: Theory and methods. Computing Surveys, 15:237-289, 1983.

[6] K. Aps¯ıtis. Hierarchies of Probabilistic and Team Learning. PhD thesis, University of Maryland, College Park, 1998.

[7] K. Aps¯ıtis, R. Freivalds, and C. H. Smith Asymmetric team learning. In Proceedings of the Tenth Annual Conference on Computational Learning Theory, pages 90-95. ACM Press, 1997.

[8] R. Daley and B. Kalyanasundaram. Use of reduction arguments in determining Popperian FIN-type learning capabilities. In K. Jantke, S. Kobayashi, E. Tomita, and T. Yokomori, editors, Algorithmic Learning Theory: Fourth International Workshop (ALT '93), volume 744 of Lecture Notes in Artificial Intelligence, pages 173-186. Springer-Verlag, 1993.

[9] R. Daley and B. Kalyanasundaram. Towards reduction arguments for FINite learning. In K. Jantke and S. Lange, editors, Algorithmic Learning for Knowledge-Based Systems, volume 961 of Lecture Notes in Artificial Intelligence, pages 63-74. Springer-Verlag, 1995.

[10] R. Daley, B. Kalyanasundaram, and M. Velauthapillai. The power of probabilism in Popperian finite learning. In Analogical and Inductive Inference, Proceedings of the Third International Workshop, volume 642 of Lecture Notes in Artificial Intelligence, pages 151-169. Springer-Verlag, 1992.