Continuity properties of Neumann-to-Dirichlet maps with respect to the H-convergence of the coefficient matrices

Article, Preprint English OPEN
Rondi, L.;
  • Related identifiers: doi: 10.1088/0266-5611/31/4/045002
  • Subject: Primary 49J45, Secondary 35R30 | Mathematics - Analysis of PDEs | Settore MAT/05 - Analisi Matematica | H-convergence; G-convergence; inverse conductivity problem

We investigate the continuity of boundary operators, such as the Neumann-to-Dirichlet map, with respect to the coefficient matrices of the underlying elliptic equations. We show that for nonsmooth coefficients the correct notion of convergence is the one provided by $H$... View more
  • References (23)
    23 references, page 1 of 3

    [1] G. Alessandrini and E. Cabib, EIT and the average conductivity, J. Inverse Ill-Posed Probl. 16 (2008) 727-736.

    [2] G. Allaire, Shape Optimization by the Homogenization Method, SpringerVerlag, New York, 2002.

    [3] K. Astala and L. Pa¨iv¨arinta, Caldero´n's inverse conductivity problem in the plane, Ann. of Math. (2) 163 (2006) 265-299.

    [4] K. Astala, L. Pa¨iv¨arinta and M. Lassas, Caldero´n's inverse problem for anisotropic conductivity in the plane, Comm. Partial Differential Equations 30 (2005) 207-224.

    [5] A. P. Caldero´n, On an inverse boundary value problem, in Seminar on numerical analysis and its applications to continuum physics, Sociedade Brasileira de Matema´tica, Rio de Janeiro, 1980, pp. 65-73.

    [6] D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford University Press, New York, 1999.

    [7] D. Faraco, Y. Kurylev and A. Ruiz, G-convergence, Dirichlet to Neumann maps and invisibility, preprint (2013).

    [8] T. Gallouet and A. Monier, On the regularity of solutions to elliptic equations, Rend. Mat. Appl. (7) 19 (1999) 471-488.

    [9] B. Haberman, Uniqueness in Caldero´n's problem for conductivities with unbounded gradient, preprint (2014).

    [10] B. Haberman and D. Tataru, Uniqueness in Caldero´n's problem with Lipschitz conductivities, Duke Math. J. 162 (2013) 496-516.

  • Metrics