On two-spectra inverse problems

Preprint English OPEN
Guliyev, Namig J. (2018)
  • Publisher: HAL CCSD
  • Subject: Mathematical Physics | [ MATH.MATH-FA ] Mathematics [math]/Functional Analysis [math.FA] | [ MATH.MATH-CA ] Mathematics [math]/Classical Analysis and ODEs [math.CA] | Mathematics - Spectral Theory | Mathematics - Classical Analysis and ODEs | [ MATH.MATH-SP ] Mathematics [math]/Spectral Theory [math.SP] | one-dimensional Schrödinger equation | boundary conditions dependent on the eigenvalue parameter | two-spectra inverse problem | [ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph] | 34A55, 34B07, 34B24, 34L40, 47A75, 47E05 | Mathematics - Functional Analysis
    arxiv: Mathematics::Spectral Theory | Mathematics::Functional Analysis

We consider a two-spectra inverse problem for the one-dimensional Schr\"{o}dinger equation with boundary conditions containing rational Herglotz--Nevanlinna functions of the eigenvalue parameter and provide a complete solution of this problem.
  • References (23)
    23 references, page 1 of 3

    [1] R. Kh. Amirov, A. S. Ozkan and B. Keskin, Inverse problems for impulsive Sturm-Liouville operator with spectral parameter linearly contained in boundary conditions, Integral Transforms Spec. Funct. 20 (2009), no. 7-8, 607-618.

    [2] A. I. Benedek and R. Panzone, On inverse eigenvalue problems for a second-order differential equation with parameter contained in the boundary conditions, Universidad Nacional del Sur, Instituto de Matema´tica, Bah´ıa Blanca, 1980.

    [3] P. A. Binding, P. J. Browne and B. A. Watson, Equivalence of inverse Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, J. Math. Anal. Appl. 291 (2004), no. 1, 246-261.

    [4] G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta Math. 78 (1946), 1-96

    [5] M. V. Chugunova, Inverse spectral problem for the Sturm-Liouville operator with eigenvalue parameter dependent boundary conditions, Operator theory, system theory and related topics, Birkh¨auser, Basel, 2001, pp. 187-194.

    [6] J. Eckhardt, F. Gesztesy, R. Nichols and G. Teschl, Inverse spectral theory for SturmLiouville operators with distributional potentials, J. Lond. Math. Soc. (2) 88 (2013), no. 3, 801-828. arXiv:1210.7628

    [7] G. Freiling and V. Yurko, Inverse Sturm-Liouville problems and their applications, Nova Science Publishers, Inc., Huntington, NY, 2001.

    [8] G. Freiling and V. Yurko, Inverse problems for Sturm-Liouville equations with boundary conditions polynomially dependent on the spectral parameter, Inverse Problems 26 (2010), no. 5, 055003, 17 pp.

    [9] N. J. Guliyev, Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter linearly contained in one of the boundary conditions, Inverse Problems 21 (2005), no. 4, 1315-1330. arXiv:0803.0566

    [10] N. J. Guliyev, A uniqueness theorem for Sturm-Liouville equations with a spectral parameter linearly contained in the boundary conditions, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 25 (2006), 35-40.

  • Similar Research Results (2)
  • Metrics
    No metrics available
Share - Bookmark