publication . Article . Preprint . Other literature type . 2014

Axial dark matter: The case for an invisible $Z′$

Lebedev, Oleg; Mambrini, Y.;
Open Access
  • Published: 01 Jun 2014 Journal: Physics Letters B, volume 734, pages 350-353 (issn: 0370-2693, Copyright policy)
  • Publisher: Elsevier BV
We consider the possibility that fermionic dark matter (DM) interacts with the Standard Model fermions through an axial Z' boson. As long as Z' decays predominantly into dark matter, the relevant LHC bounds are rather loose. Direct dark matter detection does not significantly constrain this scenario either, since dark matter scattering on nuclei is spin--dependent. As a result, for a range of the Z' mass and couplings, the DM annihilation cross section is large enough to be consistent with thermal history of the Universe. In this framework, the thermal WIMP paradigm, which currently finds itself under pressure, is perfectly viable.
arXiv: Astrophysics::Cosmology and Extragalactic Astrophysics
free text keywords: Nuclear and High Energy Physics, High Energy Physics - Phenomenology, [PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph], [PHYS]Physics [physics], CONSTRAINTS, 114 Physical sciences, Baryonic dark matter, Scalar field dark matter, Dark matter, Warm dark matter, Mixed dark matter, Physics, Dark fluid, Hot dark matter, Light dark matter, Particle physics
Funded by
  • Funder: European Commission (EC)
  • Project Code: 289442
  • Funding stream: FP7 | SP3 | PEOPLE
Search and study of the Higgs bosons at the LHC
  • Funder: European Commission (EC)
  • Project Code: 321133
  • Funding stream: FP7 | SP2 | ERC
20 references, page 1 of 2

[1] P. Langacker, Rev. Mod. Phys. 81 (2008) 1199; T. Han, P. Langacker, Z. Liu, L.-T. Wang, arXiv:1308.2738 [hep-ph].

[2] F. Domingo, O. Lebedev, Y. Mambrini, Jérém Quevillon, A. Ringwald, J. High Energy Phys. 1309 (2013) 020.

[3] K. Cheung, T.-C. Yuan, J. High Energy Phys. 0703 (2007) 120; Y. Mambrini, J. Cosmol. Astropart. Phys. 1107 (2011) 009; V. Barger, D. Marfatia, A. Peterson, Phys. Rev. D 87 (2013) 015026; E. Dudas, L. Heurtier, Y. Mambrini, B. Zaldivar, J. High Energy Phys. 1311 (2013) 083.

[4] G. Bertone, D. Hooper, J. Silk, Phys. Rep. 405 (2005) 279.

[5] CMS Collaboration, S. Chatrchyan, et al., Phys. Lett. B 720 (2013) 63.

[6] ATLAS Collaboration, G. Aad, et al., J. High Energy Phys. 1211 (2012) 138.

[7] LUX Collaboration, D.S. Akerib, et al., arXiv:1310.8214 [astro-ph.CO].

[8] G. Arcadi, Y. Mambrini, M.H.G. Tytgat, B. Zaldivar, arXiv:1401.0221 [hep-ph].

[9] A. Alves, S. Profumo, F.S. Queiroz, arXiv:1312.5281 [hep-ph].

[10] A. De Simone, G.F. Giudice, A. Strumia, arXiv:1402.6287 [hep-ph].

[11] B. Holdom, Phys. Lett. B 166 (1986) 196.

[12] XENON100 Collaboration, E. Aprile, et al., Phys. Rev. Lett. 111 (2) (2013) 021301; PICASSO Collaboration, S. Archambault, et al., Phys. Lett. B 711 (2012) 153; COUPP Collaboration, E. Behnke, et al., Phys. Rev. D 86 (2012) 052001.

[13] M. Freytsis, Z. Ligeti, Phys. Rev. D 83 (2011) 115009.

[14] C. Boehm, M.J. Dolan, C. McCabe, M. Spannowsky, C.J. Wallace, arXiv:1401.6458 [hep-ph].

[15] ALEPH and DELPHI and L3 and OPAL and LEP Electroweak Working Group Collaborations, J. Alcaraz, et al., arXiv:hep-ex/0612034.

20 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue