Nonuniform SINR+Voroni Diagrams are Effectively Uniform

Conference object English OPEN
Kantor, Erez; Lotker, Zvi; Parter, Merav; Peleg, David;
  • Publisher: Springer-Verlag Berlin Heidelberg
  • Related identifiers: doi: 10.1007/978-3-662-48653-5_39
  • Subject: [INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] | [ INFO.INFO-DC ] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC]
    arxiv: Computer Science::Networking and Internet Architecture

International audience; This paper concerns the behavior of an SINR diagram of wireless systems, composed of a set S of n stations embedded in R^d, when restricted to the corresponding Voronoi diagram imposed on S. The diagram obtained by restricting the SINR zones to t... View more
  • References (18)
    18 references, page 1 of 2

    1. B. Aronov and M.J. Katz. Batched point location in SINR diagrams via algebraic tools. In Proc. ICALP, 2015.

    2. F. Aurenhammer and H. Edelsbrunner. An optimal algorithm for constructing the weighted voronoi diagram in the plane. Pattern Recognition, 17, 1984.

    3. C. Avin, Y. Emek, E. Kantor, Z. Lotker, D. Peleg, and L. Roditty. SINR diagrams: Convexity and its applications in wireless networks. J. ACM, 59(4), 2012.

    4. C. Avin, Z. Lotker, and Y.-A. Pignolet. On the power of uniform power: Capacity of wireless networks with bounded resources. In Proc. ESA, pages 373{384, 2009.

    5. J. Basch, L.J. Guibas, and J. Hershberger. Data structures for mobile data, 1997.

    6. B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An energy-e cient coordination algorithm for topology maintenance in ad hoc wireless networks. Wireless Networks, 8:481{494, 2002.

    7. M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algorithms and Applications. Springer-Verlag, 2008.

    8. L.J. Guibas, J.S.B Mitchell, and T. Roos. Voronoi diagrams of moving points in the plane. In Proc. WG. SV, 1992.

    9. E. Kantor, Z. Lotker, M. Parter, and D. Peleg. The topology of wireless communication. In Proc. STOC, 2011.

    10. E. Kantor, Z. Lotker, M. Parter, and D. Peleg. The topology of wireless communication. In, 2011.

  • Related Organizations (2)
    Purdue University
    United States
    MIT ( MIT )
    United States
    Website url:
  • Metrics