publication . Article . 2015

Natural sunlight shapes crude oil-degradingbacterial communities in northern Gulf of Mexico surface waters

Bacosa, Hernando P.; Liu, Zhanfei; Erdner, Deana L.;
Open Access English
  • Published: 01 Dec 2015 Journal: Frontiers in Microbiology, volume 6 (issn: 1664-302X, eissn: 1664-302X, Copyright policy)
  • Publisher: Frontiers Media S.A.
Abstract
Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over t...
Subjects
free text keywords: oil pollution, Sunlight, photooxidation, Gulf of Mexico, Microbiology, Biodegradation, bacterial community, Original Research, QR1-502, Deepwater Horizon, Corexit
104 references, page 1 of 7

Arfsten D. P. Schaeffer D. J. Mulveny D. C. (1996). The effects of near ultraviolet radiation on the toxic effects of polycyclic aromatic hydrocarbons in animals and plants: a review. Ecotoxicol. Environ. Saf. 33, 1–24. 10.1006/eesa.1996.0001 8744919 [PubMed] [DOI]

Atlas R. M. Hazen T. C. (2011). Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ. Sci. Technol. 45, 6709–6715. 10.1021/es2013227 21699212 [OpenAIRE] [PubMed] [DOI]

Bacosa H. P. Erdner D. L. Liu Z. (2015). Differentiating the roles of photooxidation and biodegradation in the weathering of Light Louisiana Sweet crude oil in surface water from the Deepwater Horizon site. Mar. Pollut. Bull. 5, 265–272. 10.1016/j.marpolbul.2015.04.005 [DOI]

Bacosa H. P. Inoue C. (2015). Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan. J. Hazard. Mater. 283, 689–697. 10.1016/j.jhazmat.2014.09.068 25464311 [PubMed] [DOI]

Bacosa H. P. Suto K. Inoue C. (2011). Preferential utilization of petroleum oil hydrocarbon components by microbial consortia reflects degradation pattern in aliphatic–aromatic hydrocarbon binary mixtures. World J. Microbiol. Biotechnol. 27, 1109–1117. 10.1007/s11274-010-0557-6 [DOI]

Bacosa H. P. Suto K. Inoue C. (2013). Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan. J. Environ. Sci. Health A Tox. Hazard. S ubst. Environ. Eng. 48, 835–846. 10.1080/10934529.2013.761476 23485232 [PubMed] [DOI]

Bacosa H. Suto K. Inoue C. (2010). Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium. Int. Biodeterior. Biodegradation 64, 702–710. 10.1016/j.ibiod.2010.03.008 [DOI]

Barbeau K. Zhang G. Live D. H. Butler A. (2001). Petrobactin, a photoreactivesiderophore produced by the oil-degrading marine bacterium Marinobacterhydrocarbonoclasticus. J. Am. Chem. Soc. 124, 378–379. 10.1021/ja0119088 11792199 [PubMed] [DOI]

Batchu S. R. Ramirez C. E. Gardinali P. R. (2014). Stability of dioctylsulfosuccinate (DOSS) towards hydrolysis and photodegradation under simulated solar conditions. Sci. Total Environ. 481, 260-265. 10.1016/j.scitotenv.2014.02.033 [DOI]

Beazley M. J. Martinez R. J. Rajan S. Powell J. Piceno Y. M. Tom L. M. . (2012). Microbial community analysis of a coastal salt marsh affected by the deepwater horizon oil spill. PLoS ONE 7:41305. 10.1371/journal.pone.0041305 22815990 [OpenAIRE] [PubMed] [DOI]

Bertilsson S. Widenfalk A. (2002). Photochemical degradation of PAHs in freshwaters and their impact on bacterial growth–influence of water chemistry. Hydrobiologia 469, 23–32. 10.1023/A:1015579628189 [DOI]

Bobinger S. Andersson J. T. (2009). Photooxidation products of po lycyclic aromatic compounds containing sulfur. Environ. Sci. Technol. 43, 8119–8125. 10.1021/es901859s 19924932 [PubMed] [DOI]

Brakstad O. G. Daling P. S. Faksness L. G. Almås I. K. Vang S. H. Syslak L. . (2014). Depletion and biodegradation of hydrocarbons in dispersions and emulsions of the Macondo 252 oil generated in an oil-on-seawater mesocosm flume basin. Mar. Pollut. Bull. 84, 125–134. 10.1016/j.marpolbul.2014.05.027 24928454 [PubMed] [DOI]

Camilli R. Reddy C. M. Yoerger D. R. Van Mooy B. A. S. Jakuba M. V. Kinsey J. C. (2010). Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330, 201–204. 10.1126/scienc e.1195223 20724584 [PubMed] [DOI]

Campo P. Venosa A. D. Suidan M. T. (2013). Biodegradability of Corexit 9500 and dispersed south louisiana crude oil at 5 and 25° C. Environ. Sci. Technol. 47, 1960–1967. 10.1021/es303881h 23363064 [PubMed] [DOI]

104 references, page 1 of 7
Abstract
Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over t...
Subjects
free text keywords: oil pollution, Sunlight, photooxidation, Gulf of Mexico, Microbiology, Biodegradation, bacterial community, Original Research, QR1-502, Deepwater Horizon, Corexit
104 references, page 1 of 7

Arfsten D. P. Schaeffer D. J. Mulveny D. C. (1996). The effects of near ultraviolet radiation on the toxic effects of polycyclic aromatic hydrocarbons in animals and plants: a review. Ecotoxicol. Environ. Saf. 33, 1–24. 10.1006/eesa.1996.0001 8744919 [PubMed] [DOI]

Atlas R. M. Hazen T. C. (2011). Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ. Sci. Technol. 45, 6709–6715. 10.1021/es2013227 21699212 [OpenAIRE] [PubMed] [DOI]

Bacosa H. P. Erdner D. L. Liu Z. (2015). Differentiating the roles of photooxidation and biodegradation in the weathering of Light Louisiana Sweet crude oil in surface water from the Deepwater Horizon site. Mar. Pollut. Bull. 5, 265–272. 10.1016/j.marpolbul.2015.04.005 [DOI]

Bacosa H. P. Inoue C. (2015). Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan. J. Hazard. Mater. 283, 689–697. 10.1016/j.jhazmat.2014.09.068 25464311 [PubMed] [DOI]

Bacosa H. P. Suto K. Inoue C. (2011). Preferential utilization of petroleum oil hydrocarbon components by microbial consortia reflects degradation pattern in aliphatic–aromatic hydrocarbon binary mixtures. World J. Microbiol. Biotechnol. 27, 1109–1117. 10.1007/s11274-010-0557-6 [DOI]

Bacosa H. P. Suto K. Inoue C. (2013). Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan. J. Environ. Sci. Health A Tox. Hazard. S ubst. Environ. Eng. 48, 835–846. 10.1080/10934529.2013.761476 23485232 [PubMed] [DOI]

Bacosa H. Suto K. Inoue C. (2010). Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium. Int. Biodeterior. Biodegradation 64, 702–710. 10.1016/j.ibiod.2010.03.008 [DOI]

Barbeau K. Zhang G. Live D. H. Butler A. (2001). Petrobactin, a photoreactivesiderophore produced by the oil-degrading marine bacterium Marinobacterhydrocarbonoclasticus. J. Am. Chem. Soc. 124, 378–379. 10.1021/ja0119088 11792199 [PubMed] [DOI]

Batchu S. R. Ramirez C. E. Gardinali P. R. (2014). Stability of dioctylsulfosuccinate (DOSS) towards hydrolysis and photodegradation under simulated solar conditions. Sci. Total Environ. 481, 260-265. 10.1016/j.scitotenv.2014.02.033 [DOI]

Beazley M. J. Martinez R. J. Rajan S. Powell J. Piceno Y. M. Tom L. M. . (2012). Microbial community analysis of a coastal salt marsh affected by the deepwater horizon oil spill. PLoS ONE 7:41305. 10.1371/journal.pone.0041305 22815990 [OpenAIRE] [PubMed] [DOI]

Bertilsson S. Widenfalk A. (2002). Photochemical degradation of PAHs in freshwaters and their impact on bacterial growth–influence of water chemistry. Hydrobiologia 469, 23–32. 10.1023/A:1015579628189 [DOI]

Bobinger S. Andersson J. T. (2009). Photooxidation products of po lycyclic aromatic compounds containing sulfur. Environ. Sci. Technol. 43, 8119–8125. 10.1021/es901859s 19924932 [PubMed] [DOI]

Brakstad O. G. Daling P. S. Faksness L. G. Almås I. K. Vang S. H. Syslak L. . (2014). Depletion and biodegradation of hydrocarbons in dispersions and emulsions of the Macondo 252 oil generated in an oil-on-seawater mesocosm flume basin. Mar. Pollut. Bull. 84, 125–134. 10.1016/j.marpolbul.2014.05.027 24928454 [PubMed] [DOI]

Camilli R. Reddy C. M. Yoerger D. R. Van Mooy B. A. S. Jakuba M. V. Kinsey J. C. (2010). Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330, 201–204. 10.1126/scienc e.1195223 20724584 [PubMed] [DOI]

Campo P. Venosa A. D. Suidan M. T. (2013). Biodegradability of Corexit 9500 and dispersed south louisiana crude oil at 5 and 25° C. Environ. Sci. Technol. 47, 1960–1967. 10.1021/es303881h 23363064 [PubMed] [DOI]

104 references, page 1 of 7
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2015

Natural sunlight shapes crude oil-degradingbacterial communities in northern Gulf of Mexico surface waters

Bacosa, Hernando P.; Liu, Zhanfei; Erdner, Deana L.;