Development of the Early Axon Scaffold in the Rostral Brain of the Small Spotted Cat Shark (Scyliorhinus canicula) Embryo

Article English OPEN
Ware, Michelle; Waring, Colin P.; Schubert, Frank R.;
(2014)
  • Publisher: Hindawi Publishing Corporation
  • Journal: International Scholarly Research Notices,volume 2,014,pagesWare , M , Waring , C & Schubert , F 2014 , ' Development of the early axon scaffold in the rostral brain of the small spotted cat shark (Scyliorhinus canicula) embryo ' International Scholarly Research Notices , vol. 2014 , 196594 , pp. 196594 . DOI: 10.1155/2014/196594-Ware , M , Waring , C & Schubert , F 2014 , ' Development of the early axon scaffold in the rostral brain of the small spotted cat shark (Scyliorhinus canicula) embryo ' International Scholarly Research Notices , vol. 2014 , 196594 , pp. 196594 . DOI: 10.1155/2014/196594 (issn: 2356-7872, eissn: 2356-7872)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1155/2014/196594, pmc: PMC4897524
  • Subject: [ SDV ] Life Sciences [q-bio] | Biology | Research Article | /dk/atira/pure/core/subjects/biology | Article Subject
    mesheuropmc: nervous system

International audience; The cat shark is increasingly used as a model for Chondrichthyes, an evolutionarily important sister group of the bony vertebrates that include teleosts and tetrapods. In the bony vertebrates, the first axon tracts form a highly conserved early a... View more
  • References (28)
    28 references, page 1 of 3

    [1] S. W. Wilson, L. S. Ross, T. Parrett, and S. S. Easter Jr., “eTh development of a simple scaofld of axon tracts in the brain of the embryonic zebrasfih, Brachydanio rerio,” Development, vol. 108, no. 1, pp. 121-145, 1990.

    [2] A. Barreiro-Iglesias, B. Villar-Cheda, X.-M. Abalo, R. Anado´n, and M. C. Rodicio, “eTh early scaofld of axon tracts in the brain of a primitive vertebrate, the sea lamprey,” Brain Research Bulletin, vol. 75, no. 1, pp. 42-52, 2008.

    [3] V. Hartenstein, “Early pattern of neuronal diefrentiation in the Xenopus embryonic brainstem and spinal cord,” Journal of Comparative Neurology, vol. 328, no. 2, pp. 213-231, 1993.

    [4] G. S. Mastick and S. S. Easter Jr., “Initial organization of neurons and tracts in the embryonic mouse fore - and midbrain,” Developmental Biology, vol. 173, no. 1, pp. 79-94, 1996.

    [5] M. Ware and F. R. Schubert, “Development of the early axon scaofld in the rostral brain of the chick embryo,” Journal of Anatomy, vol. 219, no. 2, pp. 203-216, 2011.

    [6] S. S. Easter Jr., L. S. Ross, and A. Frankfurter, “Initial tract formation in the mouse brain,” Journal of Neuroscience, vol. 13, no. 1, pp. 285-299, 1993.

    [7] W. J. A. J. Smeets, R. Nieuwenhuys, and B. L. Roberts, eTh Central Nervous System of Cartilaginous Fishes: Structure and Functional Correlations, Springer, 1983.

    [8] R. Anadon, P. Molist, and I. Rodriguez-Moldes, “Distribution of choline acetyltransferase immunoreactivity in the brain of an elasmobranch, the lesser spotted dogsfih ( Scyliorhinus canicula),” Journal of Comparative Neurology, vol. 420, no. 2, pp. 139-170, 2000.

    [9] I. Carrera, C. Sueiro, P. Molist et al., “Temporal and spatial organization of tyrosine hydroxylase-immunoreactive cell groups in the embryonic brain of an elasmobranch, the lesser-spotted dogsfih Scyliorhinus canicula,” Brain Research Bulletin, vol. 66, no. 4-6, pp. 541-545, 2005.

    [10] I. Carrera, P. Molist, R. Anado´n, and I. Rodr´ıguez-Moldes, “Development of the serotoninergic system in the central nervous system of a shark, the lesser spotted dogsfih Scyliorhinus canicula,” Journal of Comparative Neurology, vol. 511, no. 6, pp. 804-831, 2008.

  • Related Organizations (4)
  • Metrics
Share - Bookmark