publication . Article . Other literature type . 2016

Role of lipid phosphate phosphatase 3 in human aortic endothelial cell function

Touat-Hamici, Zahia; Weidmann, Henri; Blum, Yuna; Proust, Carole; Durand, Hervé; Iannacci, Francesca; Codoni, Veronica; Gaignard, Pauline; Thérond, Patrice; Civelek, Mete; ...
Open Access English
  • Published: 30 Sep 2016
  • Publisher: Oxford University Press
Abstract
International audience; Aims: Lipid phosphate phosphatase 3 (LPP3; PPAP2B) is a transmembrane protein dephosphorylating and thereby terminating signalling of lipid substrates including lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P). Human LPP3 possesses a cell adhesion motif that allows interaction with integrins. A polymorphism (rs17114036) in PPAP2B is associated with coronary artery disease, which prompted us to investigate the possible role of LPP3 in human endothelial dysfunction, a condition promoting atherosclerosis. Methods and results: To study the role of LPP3 in endothelial cells we used human primary aortic endothelial cells (HAECs) in...
Subjects
mesheuropmc: lipids (amino acids, peptides, and proteins)
free text keywords: Atherosclerosis, [SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system, Angiogenesis, Original Articles, Apoptosis, Endothelial dysfunction
Related Organizations
Funded by
NIH| Systems genetics analysis of cardiometabolic trait loci in humans
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5K99HL121172-02
  • Funding stream: NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
40 references, page 1 of 3

1. Hopkins PN. Molecular biology of atherosclerosis. Physiol Rev 2013;93:1317-1542.

2. Schunkert H, König IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, Preuss M, Stewart AFR, Barbalic M, Gieger C, Absher D, Aherrahrou Z, Allayee H, Altshuler D, Anand SS, Andersen K, Anderson JL, Ardissino D, Ball SG, Balmforth AJ, Barnes TA, Becker DM, Becker LC, Berger K, Bis JC, Boekholdt SM, Boerwinkle E, Braund PS, Brown MJ, Burnett MS, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 2011;43:333-338.

3. Erbilgin A, Civelek M, Romanoski CE, Pan C, Hagopian R, Berliner JA, Lusis AJ. Identification of CAD candidate genes in GWAS loci and their expression in vascular cells. J Lipid Res 2013;54:1894-1905. [OpenAIRE]

4. Wu C, Huang R-T, Kuo C-H, Kumar S, Kim CW, Lin Y-C, Chen Y-J, Birukova A, Birukov KG, Dulin NO, Civelek M, Lusis AJ, Loyer X, Tedgui A, Dai G, Jo H, Fang Y. Mechanosensitive PPAP2B Regulates Endothelial Responses to Atherorelevant Hemodynamic Forces. Circ Res 2015;117:e41-e53.

5. Reschen ME, Gaulton KJ, Lin D, Soilleux EJ, Morris AJ, Smyth SS, O'Callaghan CA. Lipid-Induced Epigenomic Changes in Human Macrophages Identify a Coronary Artery Disease-Associated Variant that Regulates PPAP2B Expression through Altered C/EBP-Beta Binding. PLoS Genet 2015;11:e1005061.

6. Panchatcharam M, Miriyala S, Salous A, Wheeler J, Dong A, Mueller P, Sunkara M, Escalante-Alcalde D, Morris AJ, Smyth SS. Lipid phosphate phosphatase 3 negatively regulates smooth muscle cell phenotypic modulation to limit intimal hyperplasia. Arterioscler Thromb Vasc Biol 2013;33:52-59.

7. Panchatcharam M, Salous AK, Brandon J, Miriyala S, Wheeler J, Patil P, Sunkara M, Morris AJ, Escalante-Alcalde D, Smyth SS. Mice with targeted inactivation of ppap2b in endothelial and hematopoietic cells display enhanced vascular inflammation and permeability. Arterioscler Thromb Vasc Biol 2014;34:837-845.

8. Kai M, Wada I, Imai S i, Sakane F, Kanoh H. Cloning and characterization of two human isozymes of Mg2+-independent phosphatidic acid phosphatase. J Biol Chem 1997;272:24572-24578.

9. Roberts R, Sciorra VA, Morris AJ. Human type 2 phosphatidic acid phosphohydrolases. Substrate specificity of the type 2a, 2b, and 2c enzymes and cell surface activity of the 2a isoform. J Biol Chem 1998;273:22059-22067.

10. Escalante-Alcalde D, Morales SL, Stewart CL. Generation of a reporter-null allele of Ppap2b/Lpp3and its expression during embryogenesis. Int J Dev Biol 2009;53:139-147.

11. Escalante-Alcalde D, Hernandez L, Le Stunff H, Maeda R, Lee H-S, Jr-Gang-Cheng null, Sciorra VA, Daar I, Spiegel S, Morris AJ, Stewart CL. The lipid phosphatase LPP3 regulates extra-embryonic vasculogenesis and axis patterning. Dev Camb Engl 2003;130:4623-4637.

12. Ren H, Panchatcharam M, Mueller P, Escalante-Alcalde D, Morris AJ, Smyth SS. Lipid phosphate phosphatase (LPP3) and vascular development. Biochim Biophys Acta BBA - Mol Cell Biol Lipids 2013;1831:126-132.

13. Brindley DN, English D, Pilquil C, Buri K, Ling ZC. Lipid phosphate phosphatases regulate signal transduction through glycerolipids and sphingolipids. Biochim Biophys Acta 2002;1582:33-44.

14. Sciorra VA, Morris AJ. Roles for lipid phosphate phosphatases in regulation of cellular signaling. Biochim Biophys Acta 2002;1582:45-51.

15. Brindley DN, Pilquil C. Lipid phosphate phosphatases and signaling. J Lipid Res 2009;50 Suppl:S225-S230. [OpenAIRE]

40 references, page 1 of 3
Similar Outcomes
19 research outcomes, page 1 of 2
19 research outcomes, page 1 of 2
Abstract
International audience; Aims: Lipid phosphate phosphatase 3 (LPP3; PPAP2B) is a transmembrane protein dephosphorylating and thereby terminating signalling of lipid substrates including lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P). Human LPP3 possesses a cell adhesion motif that allows interaction with integrins. A polymorphism (rs17114036) in PPAP2B is associated with coronary artery disease, which prompted us to investigate the possible role of LPP3 in human endothelial dysfunction, a condition promoting atherosclerosis. Methods and results: To study the role of LPP3 in endothelial cells we used human primary aortic endothelial cells (HAECs) in...
Subjects
mesheuropmc: lipids (amino acids, peptides, and proteins)
free text keywords: Atherosclerosis, [SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system, Angiogenesis, Original Articles, Apoptosis, Endothelial dysfunction
Related Organizations
Funded by
NIH| Systems genetics analysis of cardiometabolic trait loci in humans
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5K99HL121172-02
  • Funding stream: NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
40 references, page 1 of 3

1. Hopkins PN. Molecular biology of atherosclerosis. Physiol Rev 2013;93:1317-1542.

2. Schunkert H, König IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, Preuss M, Stewart AFR, Barbalic M, Gieger C, Absher D, Aherrahrou Z, Allayee H, Altshuler D, Anand SS, Andersen K, Anderson JL, Ardissino D, Ball SG, Balmforth AJ, Barnes TA, Becker DM, Becker LC, Berger K, Bis JC, Boekholdt SM, Boerwinkle E, Braund PS, Brown MJ, Burnett MS, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 2011;43:333-338.

3. Erbilgin A, Civelek M, Romanoski CE, Pan C, Hagopian R, Berliner JA, Lusis AJ. Identification of CAD candidate genes in GWAS loci and their expression in vascular cells. J Lipid Res 2013;54:1894-1905. [OpenAIRE]

4. Wu C, Huang R-T, Kuo C-H, Kumar S, Kim CW, Lin Y-C, Chen Y-J, Birukova A, Birukov KG, Dulin NO, Civelek M, Lusis AJ, Loyer X, Tedgui A, Dai G, Jo H, Fang Y. Mechanosensitive PPAP2B Regulates Endothelial Responses to Atherorelevant Hemodynamic Forces. Circ Res 2015;117:e41-e53.

5. Reschen ME, Gaulton KJ, Lin D, Soilleux EJ, Morris AJ, Smyth SS, O'Callaghan CA. Lipid-Induced Epigenomic Changes in Human Macrophages Identify a Coronary Artery Disease-Associated Variant that Regulates PPAP2B Expression through Altered C/EBP-Beta Binding. PLoS Genet 2015;11:e1005061.

6. Panchatcharam M, Miriyala S, Salous A, Wheeler J, Dong A, Mueller P, Sunkara M, Escalante-Alcalde D, Morris AJ, Smyth SS. Lipid phosphate phosphatase 3 negatively regulates smooth muscle cell phenotypic modulation to limit intimal hyperplasia. Arterioscler Thromb Vasc Biol 2013;33:52-59.

7. Panchatcharam M, Salous AK, Brandon J, Miriyala S, Wheeler J, Patil P, Sunkara M, Morris AJ, Escalante-Alcalde D, Smyth SS. Mice with targeted inactivation of ppap2b in endothelial and hematopoietic cells display enhanced vascular inflammation and permeability. Arterioscler Thromb Vasc Biol 2014;34:837-845.

8. Kai M, Wada I, Imai S i, Sakane F, Kanoh H. Cloning and characterization of two human isozymes of Mg2+-independent phosphatidic acid phosphatase. J Biol Chem 1997;272:24572-24578.

9. Roberts R, Sciorra VA, Morris AJ. Human type 2 phosphatidic acid phosphohydrolases. Substrate specificity of the type 2a, 2b, and 2c enzymes and cell surface activity of the 2a isoform. J Biol Chem 1998;273:22059-22067.

10. Escalante-Alcalde D, Morales SL, Stewart CL. Generation of a reporter-null allele of Ppap2b/Lpp3and its expression during embryogenesis. Int J Dev Biol 2009;53:139-147.

11. Escalante-Alcalde D, Hernandez L, Le Stunff H, Maeda R, Lee H-S, Jr-Gang-Cheng null, Sciorra VA, Daar I, Spiegel S, Morris AJ, Stewart CL. The lipid phosphatase LPP3 regulates extra-embryonic vasculogenesis and axis patterning. Dev Camb Engl 2003;130:4623-4637.

12. Ren H, Panchatcharam M, Mueller P, Escalante-Alcalde D, Morris AJ, Smyth SS. Lipid phosphate phosphatase (LPP3) and vascular development. Biochim Biophys Acta BBA - Mol Cell Biol Lipids 2013;1831:126-132.

13. Brindley DN, English D, Pilquil C, Buri K, Ling ZC. Lipid phosphate phosphatases regulate signal transduction through glycerolipids and sphingolipids. Biochim Biophys Acta 2002;1582:33-44.

14. Sciorra VA, Morris AJ. Roles for lipid phosphate phosphatases in regulation of cellular signaling. Biochim Biophys Acta 2002;1582:45-51.

15. Brindley DN, Pilquil C. Lipid phosphate phosphatases and signaling. J Lipid Res 2009;50 Suppl:S225-S230. [OpenAIRE]

40 references, page 1 of 3
Similar Outcomes
19 research outcomes, page 1 of 2
19 research outcomes, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Other literature type . 2016

Role of lipid phosphate phosphatase 3 in human aortic endothelial cell function

Touat-Hamici, Zahia; Weidmann, Henri; Blum, Yuna; Proust, Carole; Durand, Hervé; Iannacci, Francesca; Codoni, Veronica; Gaignard, Pauline; Thérond, Patrice; Civelek, Mete; ...