publication . Article . Other literature type . Preprint . 2018

Hadronic Energy Resolution of a Combined High Granularity Scintillator Calorimeter System

D.H. Kim; Taikan Suehara; M. Nishiyama; M. Matysek; T. Sakuma; P. Göttlicher; V. Rusinov; S. Lu; M. Frotin; H.L. Tran; ...
Open Access English
  • Published: 11 Sep 2018
  • Publisher: HAL CCSD
Abstract
This paper presents results obtained with the combined CALICE Scintillator Electromagnetic Calorimeter, Analogue Hadronic Calorimeter and Tail Catcher & Muon Tracker, three high granularity scintillator-SiPM calorimeter prototypes. The response of the system to pions with momenta between 4 GeV/c and 32 GeV/c is analysed, including the energy response, resolution, and longitudinal shower profiles. The results of a software compensation technique based on weighting according to hit energy are compared to those of a standard linear energy reconstruction. The results are compared to predictions of the GEANT4 physics lists QGSP_BERT_HP and FTFP_BERT_HP.
Subjects
arXiv: Physics::Instrumentation and DetectorsHigh Energy Physics::ExperimentNuclear Experiment
free text keywords: programming, statistical analysis, statistics, pi-: energy spectrum, pi: irradiation, data analysis method, GEANT, CALICE, energy resolution: momentum dependence, scintillation counter, calorimeter: electromagnetic, muon: tracking detector, showers: spatial distribution, calorimeter: hadronic, [PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det], physics.ins-det, Detectors and Experimental Techniques, Instrumentation, Mathematical Physics, Physics - Instrumentation and Detectors, Photomultiplier, Pion, Granularity, Muon, Physics, Calorimeter, Nuclear physics, Hadron, Scintillator, ddc:610
Funded by
EC| AIDA
Project
AIDA
Advanced European Infrastructures for Detectors at Accelerators
  • Funder: European Commission (EC)
  • Project Code: 262025
  • Funding stream: FP7 | SP4 | INFRA
,
EC| AIDA-2020
Project
AIDA-2020
Advanced European Infrastructures for Detectors at Accelerators
  • Funder: European Commission (EC)
  • Project Code: 654168
  • Funding stream: H2020 | RIA
,
NSERC
Project
  • Funder: Natural Sciences and Engineering Research Council of Canada (NSERC)
HAL-Pasteur
Article . 2018
Provider: HAL-Pasteur
Hal-Diderot
Article . 2018
Provider: Hal-Diderot
HAL-Inserm
Article . 2018
Provider: HAL-Inserm
CERN Document Server
Other literature type . 2018

[10] R. Wigmans, Calorimetry, International Series of Monographs in Physics, Oxford University Press, (2017).

[11] H. Abramowicz et al., The response and resolution of an iron scintillator calorimeter for hadronic and electromagnetic showers between 10 GeV and 140 GeV, Nucl. Instrum. Meth. A 180 (1981) 429.

[12] H1 Calorimeter Group collaboration, B. Andrieu et al., Results from pion calibration runs for the H1 liquid argon calorimeter and comparisons with simulations, Nucl. Instrum. Meth. A 336 (1993) 499.

[13] ATLAS Liquid Argon EMEC/HEC collaboration, C. Cojocaru et al., Hadronic calibration of the ATLAS liquid argon end-cap calorimeter in the pseudorapidity region 1:6 < j j < 1:8 in beam tests, Nucl. Instrum. Meth. A 531 (2004) 481 [physics/0407009].

[14] CALICE collaboration, C. Adloff et al., Hadronic energy resolution of a highly granular scintillator-steel hadron calorimeter using software compensation techniques, 2012 JINST 7 P09017 [arXiv:1207.4210].

[15] O. Hartbrich, Scintillator calorimeters for a future linear collider experiment, DESY-THESIS, 2016-020, (2016). [OpenAIRE]

[16] N. Feege, Low-energetic hadron interactions in a highly granular calorimeter, DESY-THESIS, 2011-048, (2011).

[17] C. Günter, Comparison of iron and tungsten absorber structures for an analog hadron calorimeter, DESY-THESIS, 2015-018, (2015).

[18] R. McNabb et al., A Tungsten/Scintillating Fiber Electromagnetic Calorimeter Prototype for a High-Rate Muon g-2 Experiment, Nucl. Instrum. Meth. A 602 (2009) 396 [arXiv:0910.0818]. [OpenAIRE]

[19] GEANT4 collaboration, S. Agostinelli et al., GEANT4: A simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250.

[20] A. Ribon et al., Status of Geant4 hadronic physics for the simulation of LHC experiments at the start of LHC physics program, CERN-LCGAPP-2010-02, (2010).

[21] CALICE collaboration, B. Bilki et al., Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter, 2015 JINST 10 P04014 [arXiv:1412.2653].

Any information missing or wrong?Report an Issue