Permutation 2-groups I: structure and splitness

Article, Preprint English OPEN
Elgueta Montó, Josep;
(2013)
  • Related identifiers: doi: 10.1016/j.aim.2014.03.011
  • Subject: Categorical group | Mathematics - Category Theory | Groupoid | Grups de permutació | Split 2-group | :Matemàtiques i estadística::Àlgebra::Teoria de grups [Àrees temàtiques de la UPC] | Mathematics - Group Theory | REPRESENTATION | 20B Permutation groups | GROUPOIDS | HOMOTOPY TYPES | Permutation 2-group | Permutation groups | ALGEBRAIC-GEOMETRY | CATEGORIES | 18B40, 18D10, 22B99
    arxiv: Mathematics::Category Theory

By a 2-group we mean a groupoid equipped with a weakened group structure. It is called split when it is equivalent to the semidirect product of a discrete 2-group and a one-object 2-group. By a permutation 2-group we mean the 2-group $\mathbb{S}ym(\mathcal{G})$ of self-... View more
  • References (36)
    36 references, page 1 of 4

    [1] J. Baez, A. Baratin, L. Friedel, and D. Wise. Infinite-dimensional representations of 2-groups. Memoirs Amer. Math. Soc., 2012.

    [2] J. Baez and A. Lauda. Higher-dimensional algebra V: 2-groups. Theory Appl. Categ., 12:423-491, 2004.

    [3] J. Baez and M. Shulman. Lectures on n-categoris and cohomology. In J. Baez and P. May, editors, Towards Higher Categories, pages 1-68. Springer, 2010. IMA Volumes in Mathematics and its Applications.

    [4] D. Ben-Zvi, J. Francis, and D. Nadler. Integral transforms and drinfeld centers in derived algebraic geometry. J. Amer. Math. Soc., 23(4):909-966, 2010.

    [5] J. Berstein, I. Frenkel, and M. Khovanov. A categorification of the Temperley-Lieb algebra and Schur quotients of U(sl2) via projective and Zuckerman functors. Selecta Math. (N.S.), 5(2):199-241, 1999.

    [6] R. Blackwell, M. Kelly, and A.J. Power. Two-dimensional monad theory. J. Pure Appl. Algebra, 59(1):1-41, 1989.

    [7] F. Borceux. Handbook of Categorical Algebra 1,2, volume 50,51 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 1994.

    [8] D. Bourn and E. Vitale. Extensions of symmetric cat-groups. Homol. Homot. Appl., 4:103-162, 2002.

    [9] L. Breen. Th´eorie de schreier sup´erieure. Ann. Scient. E´cole Norm. Sup., 25:465-514, 1992.

    [10] R. Brown and C.B. Spencer. G-groupoids, crossed modules and the classifying space of a topological group. Proc. Kon. Akad. v. Wet., 79:296-302, 1976.

  • Similar Research Results (2)
  • Bioentities (1)
    2grp Protein Data Bank
  • Metrics
Share - Bookmark