Localisation de l'ATP synthase mitochondriale et remaniement du réseau mitochondrial en quiescence

Doctoral thesis French OPEN
Jimenez , Laure (2014)
  • Publisher: HAL CCSD
  • Subject: Cristae | Mitochondrie | Mitochondria | Crête | [ SDV.BC ] Life Sciences [q-bio]/Cellular Biology | Quiescence | ATP synthase | Saccharomyces cerevisiae

Mitochondria form a dynamic tubular network which organization and distribution is highly regulated.Mitochondria are double membrane organites with a complex internal architecture. Cristae, which areinner membrane invaginations, are the site of oxidative phosphorylation, reactions by which ATP synthaseproduces ATP. ATP synthase also play a key role in cristae morphogenesis. In this study, I have shown thatATP synthase localized as discrete clusters along the mitochondrial network in living S. cerevisiae cellsgrown on a fermentable carbon source. Overall our data suggest that ATP synthase clusers correspond tomitochondrial cristae, opening new avenues to explore the mechanisms involved in inner membraneremodelling.Mitochondrial network morphology is regulated by a dynamic equilibrium between the fusion and fissionof mitochondrial tubules. In the second part of my thesis, I highlight a progressive mitochondrialfragmentation during quiescence establishment, a state defined as a reversible absence of proliferation.Quiescent cells mitochondrial network is composed of immobile small cortical mitochondrial vesicles witha variable enzymatic content. Upon quiescence exit, cortical mitochondrial vesicles rapidly fuse and atubular network is reconstituted prior to bud emergence. Astonishingly, neither the canonical fusion orfission machineries nor the actin cytoskeleton are required for the mitochondrial network modificationduring quiescence / proliferation transition.; La mitochondrie forme un réseau dynamique de tubules, dont la morphologie et la distribution sont étroitement régulées. Les mitochondries sont des organelles à double membrane dont l’architecture interne est complexe. Les crêtes mitochondriales forment des invaginations de la membrane interne. Elles sont le lieu des phosphorylations oxydatives, réactions par lesquelles l’ATP synthase produit l’ATP. L’ATP synthase est également connue pour son rôle clé dans la morphogenèse des crêtes. Dans cette étude j’ai mis en évidence in vivo la localisation en cluster de l’ATP synthase au sein du réseau mitochondrial de S. cerevisiae se développant sur substrat fermentescible. Mes résultats suggèrent que ces clusters correspondent aux crêtes mitochondriales, ce qui ouvre de nouvelles perspectives pour l’étude du remaniement de la membrane interne.La morphologie du réseau mitochondrial est maintenue par un équilibre entre les processus de fusion et de fission des tubules mitochondriaux. Dans la deuxième partie de ma thèse, j’ai mis en évidence une fragmentation progressive du réseau mitochondrial lors de l’entrée des cellules en quiescence, un état cellulaire non prolifératif réversible. En quiescence, le réseau mitochondrial est constitué de petites vésicules sous corticales immobiles au contenu enzymatique variable. Lors d’un retour à l’état prolifératif ces vésicules fusionnent rapidement pour reformer un réseau tubulaire, et ce, avant l’émergence de la cellule fille. De façon surprenante j’ai mis en évidence que ni les machineries canoniques de fusion ou de fission, ni le cytosquelette d’actine ne sont requis lors du remaniement du réseau mitochondrial dans les transitions entre prolifération et quiescence.
  • References (152)
    152 references, page 1 of 16

    Ahting, U., M. Thieffry, H. Engelhardt, R. Hegerl, W. Neupert, and S. Nussberger. 2001. Tom40, the pore-forming component of the protein-conducting TOM channel in the outer membrane of mitochondria. J Cell Biol. 153:1151-60.

    Alexander, C., M. Votruba, U.E. Pesch, D.L. Thiselton, S. Mayer, A. Moore, M. Rodriguez, U. Kellner, B. Leo-Kottler, G. Auburger, S.S. Bhattacharya, and B. Wissinger. 2000. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet. 26:211-5.

    Alkhaja, A.K., D.C. Jans, M. Nikolov, M. Vukotic, O. Lytovchenko, F. Ludewig, W. Schliebs, D. Riedel, H. Urlaub, S. Jakobs, and M. Deckers. 2012. MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization. Mol Biol Cell. 23:247-57.

    Allen, C., S. Buttner, A.D. Aragon, J.A. Thomas, O. Meirelles, J.E. Jaetao, D. Benn, S.W. Ruby, M. Veenhuis, F. Madeo, and M. Werner-Washburne. 2006. Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol. 174:89-100.

    Allen, J.F. 1993. Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J Theor Biol. 165:609-31.

    Allen, R.D., C.C. Schroeder, and A.K. Fok. 1989. An investigation of mitochondrial inner membranes by rapid-freeze deep-etch techniques. J Cell Biol. 108:2233-40.

    Altmann, K., M. Frank, D. Neumann, S. Jakobs, and B. Westermann. 2008. The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae. J Cell Biol. 181:119-30.

    Amiott, E.A., and J.A. Jaehning. 2006. Mitochondrial transcription is regulated via an ATP "sensing" mechanism that couples RNA abundance to respiration. Mol Cell. 22:329-38.

    Anderson, S., A.T. Bankier, B.G. Barrell, M.H. de Bruijn, A.R. Coulson, J. Drouin, I.C. Eperon, D.P. Nierlich, B.A. Roe, F. Sanger, P.H. Schreier, A.J. Smith, R. Staden, and I.G. Young. 1981. Sequence and organization of the human mitochondrial genome. Nature. 290:457-65.

    Andersson, S.G., A. Zomorodipour, J.O. Andersson, T. Sicheritz-Ponten, U.C. Alsmark, R.M. Podowski, A.K. Naslund, A.S. Eriksson, H.H. Winkler, and C.G. Kurland. 1998. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature. 396:133-40.

  • Related Research Results (2)
  • Metrics
    No metrics available
Share - Bookmark