Development of an Indoor Airflow Energy Harvesting System for Building Environment Monitoring

Article, Other literature type OPEN
Fei, Fei; Zhou, Shengli; Mai, John; Li, Wen;
  • Publisher: MDPI AG
  • Journal: Energies,volume 7,issue 5 5,pages1-19 (issn: 1996-1073)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.3390/en7052985
  • Subject: wireless sensor networks | airflow energy harvesting | building environmental monitoring | aerodynamic flutter | Technology | aerodynamic flutter; airflow energy harvesting; building environmental monitoring; wireless sensor networks | T
    • jel: jel:Q0 | jel:Q | jel:Q4 | jel:Q47 | jel:Q49 | jel:Q48 | jel:Q43 | jel:Q42 | jel:Q41 | jel:Q40

Wireless sensor networks (WSNs) have been widely used for intelligent building management applications. Typically, indoor environment parameters such as illumination, temperature, humidity and air quality are monitored and adjusted by an intelligent building management ... View more
  • References (27)
    27 references, page 1 of 3

    U.S. Green Building Council. Available online: (accessed on 4 December 2013).

    O'Donnell, J. Specification of an information delivery tool to support optimal holistic environmental and energy management in buildings. In Proceedings of the 3rd National Conference of IBPSA-USA, Berkeley, CA, USA, 30 July-1 August 2008.

    Nasiri, A.; Zabalawi, S.A.; Mandic, G. Indoor power harvesting using photovoltaic cells for low-power applications. IEEE Trans. Ind. Electron. 2009, 56, 4502-4509.

    IEEE J. Solid-St. Circuits 2008, 43, 246-255.

    Carlson, E.J.; Strunz, K.; Otis, B.P. A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J. Solid-St. Circuits 2010, 45, 741-750.

    Xie, J.; Lee, C.; Feng, H. Design, fabrication, and characterization of CMOS MEMS-based thermoelectric power generators. J. Microelectromechan. Syst. 2010, 19, 317-324.

    Tan, Y.K.; Panda, S.K. Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes. IEEE Trans. Ind. Electron. 2011, 58, 4424-4435.

    8. Beeby, S.P.; Tudor, M.J.; White, N. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 2006, 17, R175.

    9. Swallow, L.; Luo, J.; Siores, E.; Patel, I.; Dodds, D. A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater. Struct. 2008, 17, 025017.

    10. Beeby, S.P.; Torah, R.; Tudor, M.; Glynne-Jones, P.; O'Donnell, T.; Saha, C.; Roy, S. A micro electromagnetic generator for vibration energy harvesting. J. Micromechan. Microeng. 2007, 17, 1257-1265; doi:10.1088/0960-1317/17/7/007.

  • Related Organizations (1)
  • Metrics
Share - Bookmark