publication . Other literature type . Article . 2015

Boosting brain connectome classification accuracy in Alzheimer's disease using higher-order singular value decomposition.

Paul Thompson;
Open Access
  • Published: 24 Jul 2015
  • Publisher: Frontiers Media SA
Abstract
Alzheimer's disease (AD) is a progressive brain disease. Accurate detection of AD and its prodromal stage, mild cognitive impairment (MCI), are crucial. There is also a growing interest in identifying brain imaging biomarkers that help to automatically differentiate stages of Alzheimer's disease. Here, we focused on brain structural networks computed from diffusion MRI and proposed a new feature extraction and classification framework based on higher order singular value decomposition and sparse logistic regression. In tests on publicly available data from the Alzheimer's Disease Neuroimaging Initiative, our proposed framework showed promise in detecting brain n...
Subjects
free text keywords: Neuroscience, Methods, Alzheimer's disease, mild cognitive impairment, diffusion MRI, connectome, high-order SVD, classification, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
Funded by
CIHR
Project
  • Funder: Canadian Institutes of Health Research (CIHR)
,
NSF| III-COR-Small: Beyond Feature Selection and Extraction - An Integrated Framework for High-Dimensional Data of Small Labeled Samples
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 0812551
  • Funding stream: Directorate for Computer & Information Science & Engineering | Division of Information and Intelligent Systems
,
NIH| Computational Methods for Expression Image Analysis
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5R01LM010730-02
  • Funding stream: NATIONAL LIBRARY OF MEDICINE
,
NIH| MRI Biomarker Discovery for Preclinical Alzheimers Disease with Geometry Methods
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 1R21AG043760-01A1
  • Funding stream: NATIONAL INSTITUTE ON AGING
,
NIH| CORE-- CLINICAL
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 3P30AG010129-11S1
  • Funding stream: NATIONAL INSTITUTE ON AGING
65 references, page 1 of 5

Aganj I. Lenglet C. Jahanshad N. Yacoub E. Harel N. Thompson P. M. . (2011). A Hough transform global probabilistic approach to multiple-subject diffusion MRI tractography. Med. Image Anal. 15, 414–425. 10.1016/j.media.2011.01.003 21376655 [OpenAIRE] [PubMed] [DOI]

Basser P. J. Pajevic S. Pierpaoli C. Duda J. Aldroubi A. (2000). In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632. 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O 11025519 [OpenAIRE] [PubMed] [DOI]

Behrens T. E. Berg H. J. Jbabdi S. Rushworth M. F. Woolrich M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: what can we g ain? Neuroimage 34, 144–155. 10.1016/j.neuroimage.2006.09.018 17070705 [OpenAIRE] [PubMed] [DOI]

Bouwman F. H. van der Flier W. M. Schoonenboom N. S. van Elk E. J. Kok A. Rijmen F. . (2007). Longitudinal changes of CSF biomarkers in memory clinic patients. Neurology 69, 1006–1011. 10.1212/01.wnl.0000271375.37131.04 17785669 [OpenAIRE] [PubMed] [DOI]

Burns A. (2009). Alzheimer's disease: on the verges of treatment and prevention. Lancet Neurol. 8, 4–5. 10.1016/S1474-4422(08)70271-0 19081500 [PubMed] [DOI]

Burns A. Iliffe S. (2009). Alzheimer's disease. BMJ 338:b158. 10.1136/bmj.b1 58 19196745 [OpenAIRE] [PubMed] [DOI]

Conturo T. E. Lori N. F. Cull T. S. Akbudak E. Snyder A. Z. Shimony J. S. . (1999). Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. U.S.A. 96, 10422–10427. 10.1073/pnas.96.18.10422 10468624 [OpenAIRE] [PubMed] [DOI]

Cuingnet R. Gerardin E. Tessieras J. Auzias G. Lehericy S. Habert M. O. . (2011). Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56, 766–781. 10.1016/j.neuroimage.2010.06.013 20542124 [OpenAIRE] [PubMed] [DOI]

de Jong L. W. van der Hiele K. Veer I. M. Houwing J. J. Westendorp R. G. Bollen E. L. . (2008). Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: an MRI study. Brain 131, 3277–3285. 10.1093/brain/awn278 19022861 [OpenAIRE] [PubMed] [DOI]

De Lathauwer L. De Moor B. Vandewalle J. (2000). A Multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278. 10.1137/S0895479896305696 [OpenAIRE] [DOI]

Demirhan A. Nir T. Zavaliangos-Petropulu A. Jack C. Weiner M. Bernsteinm M. . (2015). Feature selection improves the accuracy of classifying alzheimer disease using diffusion tensor images, in ISBI2015 (Brooklyn, NY). [OpenAIRE]

Dennis E. Jin Y. Kernan C. Babikian T. Mink R. Babikian T. . (2015a). White matter integrity in traumatic brain injury: effects of permissible fiber turning angle, in Proceedings/IEEE International Symposium on Biomedical Imaging: from Nano to Macro IEEE International Symposium on Biomedical Imaging (New York, NY), 930–933. [OpenAIRE]

Dennis E. L. Jin Y. Villalon-Reina J. E. Zhan L. Kernan C. L. Babikian T. . (2015b). White matter disruption in moderate/severe pediatric traumatic brain injury: advanced tract-based analyses. Neuroimage Clin. 7, 493–505. 10.1016/j.nicl.2015.02.002 25737958 [OpenAIRE] [PubMed] [DOI]

Dennis E. Zhan L. Jahanshad N. Mueller B. Jin Y. Lenglet C. . (2014). Rich club analysis of structural brain connectivity at 7 tesla versus 3 tesla, in Computational Diffusion MRI and Brain Connectivity, eds Schultz T. Nedjati-Gilani G. Venkataraman A. O'Donnell L. Panagiotaki E. (Nagoya: Springer International Publishing), 209–218.

De Santi S. de Leon M. J. Rusinek H. Convit A. Tarshish C. Y. Roche A. . (2001). Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol. Aging 22, 529–539. 10.1016/S0197-4580(01)00230-5 11445252 [PubMed] [DOI]

65 references, page 1 of 5
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue