Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005-2010

Article, Preprint English OPEN
The LIGO Scientific Collaboration ; the Virgo Collaboration ; Aasi, J. ; Abbott, B. P. ; Abbott, R. ; Abbott, T. ; Abernathy, M. R. ; Acernese, F. ; Ackley, K. ; Adams, C. ; Adams, T. ; Addesso, P. ; Adhikari, R. X. ; Affeldt, C. ; Agathos, M. ; Aggarwal, N. ; Aguiar, O. D. ; Ain, A. ; Ajith, P. ; Alemic, A. ; Allen, B. ; Allocca, A. ; Amariutei, D. ; Andersen, M. ; Anderson, R. ; Anderson, S. B. ; Anderson, W. G. ; Arai, K. ; Araya, M. C. ; Arceneaux, C. ... view all 852 authors (2014)
  • Publisher: American Physical Society
  • Related identifiers: doi: 10.1103/PhysRevD.89.102006
  • Subject:
    arxiv: General Relativity and Quantum Cosmology | Astrophysics::Galaxy Astrophysics | Astrophysics::High Energy Astrophysical Phenomena | Astrophysics::Cosmology and Extragalactic Astrophysics

We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency $50\le f_{0}/\mathrm{Hz} \le 2000$ and decay timescale $0.0001\lesssim \tau/\mathrm{s} \lesssim 0.1$ characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass $50 \le M/\mathrm{M}_\odot \le 450$ and component mass ratios of either 1:1 or 4:1. For systems with total mass $100 \le M/\mathrm{M}_\odot \le 150$, we report a 90%-confidence upper limit on the rate of binary IMBH mergers with non-spinning and equal mass components of $6.9\times10^{-8}\,$Mpc$^{-3}$yr$^{-1}$. We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, $\ell=m=2$, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.
  • References (255)
    255 references, page 1 of 26

    A. L. Urban15, K. Urbanek19, H. Vahlbruch16, G. Vajente17;31, G. Valdes34, M. Vallisneri65, M. van Beuzekom9,

    J. F. J. van den Brand9;52, C. Van Den Broeck9, M. V. van der Sluys42;9, J. van Heijningen9, A. A. van Veggel28,

    S. Vass1, M. Vasuth80, R. Vaulin10, A. Vecchio23, G. Vedovato105, J. Veitch9, P. J. Veitch92, K. Venkateswara125,

    D. Verkindt45, S. S. Verma41, F. Vetrano48;49, A. Vicere48;49, R. Vincent-Finley112, J.-Y. Vinet43, S. Vitale10,

    T. Vo27, H. Vocca47;87, C. Vorvick27, W. D. Vousden23, S. P. Vyachanin38, A. Wade67, L. Wade15, M. Wade15,

    M. Walker2, L. Wallace1, M. Wang23, X. Wang59, R. L. Ward67, M. Was8, B. Weaver27, L.-W. Wei43, M. Weinert8,

    A. J. Weinstein1, R. Weiss10, T. Welborn6, L. Wen41, P. Wessels8, M. West14, T. Westphal8, K. Wette8,

    J. T. Whelan61, S. E. Whitcomb1;41, D. J. White79, B. F. Whiting5, K. Wiesner8, C. Wilkinson27, K. Williams112,

    L. Williams5, R. Williams1, T. Williams126, A. R. Williamson7, J. L. Willis127, B. Willke16;8, M. Wimmer8,

    W. Winkler8, C. C. Wipf10, A. G. Wiseman15, H. Wittel8, G. Woan28, J. Worden27, J. Yablon77, I. Yakushin6,

  • Metrics
    No metrics available
Share - Bookmark