FHL1 activates myostatin signalling in skeletal muscle and promotes atrophy

Article English OPEN
Lee, Jen Y.; Lori, Dede; Wells, Dominic J.; Kemp, Paul R.;
(2015)
  • Publisher: Elsevier
  • Journal: FEBS Open Bio,volume 5,pages753-762 (eissn: 2211-5463)
  • Publisher copyright policies & self-archiving
  • Related identifiers: pmc: PMC4576159, doi: 10.1016/j.fob.2015.08.011
  • Subject: Research article | VEGF-C, vascular endothelial growth factor C | FHL1 | Fibre type | GDF-15, growth and differentiation factor 15 | MHC, myosin heavy chain | PAI-1, plasminogen activator inhibitor 1 | Muscle wasting | Myostatin | TGF-β, transforming growth factor beta | Mouse | TA, tibialis anterior | FHL1, four and a half LIM domain protein 1 | COPD, chronic obstructive pulmonary disease
    mesheuropmc: musculoskeletal system

Myostatin is a TGFβ family ligand that reduces muscle mass. In cancer cells, TGFβ signalling is increased by the protein FHL1. Consequently, FHL1 may promote signalling by myostatin. We therefore tested the ability of FHL1 to regulate myostatin function. FHL1 increased ... View more
  • References (36)
    36 references, page 1 of 4

    [1] Swallow, E.B., Reyes, D., Hopkinson, N.S., Man, W.D., Porcher, R., Cetti, E.J., et al. (2007) Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax 62, 115-120.

    [2] Cruz-Jentoft, A.J., Baeyens, J.P., Bauer, J.M., Boirie, Y., Cederholm, T., Landi, F., et al. (2010) Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 39 (4), 412-423, http://dx.doi.org/10.1093/ageing/afq034. afq034 [pii].

    [3] Degens, H. and Alway, S.E. (2006) Control of muscle size during disuse, disease, and aging. Int. J. Sports Med. 27 (2), 94-99, http://dx.doi.org/10.1055/s-2005- 837571.

    [4] Natanek, S.A., Gosker, H.R., Slot, I.G., Marsh, G.S., Hopkinson, N.S., Man, W.D.-C., et al. (2013) Heterogeneity of quadriceps muscle phenotype in chronic obstructive pulmonary disease (COPD); implications for stratified medicine? Muscle Nerve 48, 488-497.

    [5] Sullivan, M.J., Green, H.J. and Cobb, F.R. (1990) Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation 81 (2), 518-527.

    [6] Sirca, A. and Susec-Michieli, M. (1980) Selective type II fibre muscular atrophy in patients with osteoarthritis of the hip. J. Neurol. Sci. 44 (2-3), 149-159.

    [7] Larsson, L., Sjodin, B. and Karlsson, J. (1978) Histochemical and biochemical changes in human skeletal muscle with age in sedentary males, age 22-65 years. Acta Physiol. Scand. 103 (1), 31-39, http://dx.doi.org/10.1111/j.1748- 1716.1978.tb06187.x.

    [8] Grobet, L., Martin, L.J., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., et al. (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17 (1), 71-74, http://dx.doi.org/10.1038/ ng0997-71.

    [9] Mosher, D.S., Quignon, P., Bustamante, C.D., Sutter, N.B., Mellersh, C.S., Parker, H.G., et al. (2007) A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 3 (5), e79, http://dx.doi.org/10.1371/journal.pgen.0030079.

    [10] Hennebry, A., Berry, C., Siriett, V., O'Callaghan, P., Chau, L., Watson, T., et al. (2009) Myostatin regulates fiber-type composition of skeletal muscle by regulating MEF2 and MyoD gene expression. Am. J. Physiol. Cell Physiol. 296 (3), C525-C534, http://dx.doi.org/10.1152/ajpcell.00259.2007.

  • Related Research Results (1)
  • Related Organizations (3)
  • Metrics
Share - Bookmark