Approche Filtre pour la sélection des gènes pertinents des données biopuces du Cancer du Côlon

Report French OPEN
Settouti , Nesma; Hafa , Amel;
(2013)
  • Publisher: HAL CCSD
  • Subject: Réduction de dimension | [ SDV.BIBS ] Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] | cancer du côlon | méthodes de sélection. | [ INFO.INFO-AI ] Computer Science [cs]/Artificial Intelligence [cs.AI] | méthodes de sélection | sélection de variables(gènes) | [ INFO.INFO-BI ] Computer Science [cs]/Bioinformatics [q-bio.QM]

24 pages; Developments in biotechnology have enabled biological measure of the information contained in thousands of genes using the DNA chip. This has identified the genes expressed in a given condition. The volume and specificity of these data sets consist of more fea... View more
  • References (16)
    16 references, page 1 of 2

    4 Approches de la sélection de variables 4 4.1 Approche wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.2 Approche filtre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.3 Approche Embedded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5 Sélection de variables (Features Selection) 6 5.1 Principe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5.2 Mesure de pertinence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5.3 Procédure de recherche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5.4 Critère d'arrêt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 8 Étapes de sélection 10 8.1 Information Mutuelle (MI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 8.2 minimum Redondance Maximum Relevance (mRMR) . . . . . . . . . . . . . . . . . 12 8.3 ReliefF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 8.4 Fisher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 [ABN+99] U. Alon, N. Barkai, D. A. Noerman, K. Gish, S. Ybarra, D. Mack, and A. J Levine. Broad paerns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci, 12 :6745-6750, 1999.

    A. Antoniadis, S. Lambert-Lacroix, and F. Leblanc. Effective dimension reduction methods for tumor classification using gene expression data. Bioinformatics, 19(5) :563-570, 2003.

    [BEHW87] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Warmuth and ocam s razor. information processing leers. In international conference of machine learning, 24(6) :377-380, 1987.

    [HTE+00] T. Hastie, R. Tibshirani, M. Eisen, A. Alizadeh, R. Levy, L. Staudt, W. Chan, D. Botstein, and P. Brown. Gene shaving as a method for identifying distinct sets of genes with similar expression paerns. Genome Biol, 1(2) :1-21, 2000.

    George H . John, Ron Kohavi, and Karl Pfleger. feature and the subset selection problem. In international conference on Machine learning. Journal version in 1IJ, pages 121-129, 1994.

    K Kira and L. Rendell. A practical approach to feature selection. page 249 256, 1992.

    Sir Maurice Kendall and Alan Stewart. The advanced theory of statistics. 4th Edition.

    Mcmillan Publishing, New York, 1, 1977.

    Daphane Koller and Mehran Sahami. To waerd optimal feature selection. In international conference of machine learning., pages 284-292, 1996.

    H Liu and R Setiono. Feature selection and discretization of numeric aributes. knowledge and data engineering, 16 :145-153, 1995.

  • Metrics
Share - Bookmark