Is fMRI “noise” really noise? Resting state nuisance regressors remove variance with network structure

Article English OPEN
Bright, Molly G.; Murphy, Kevin;
(2015)
  • Publisher: Academic Press
  • Journal: Neuroimage,volume 114,pages158-169 (issn: 1053-8119, eissn: 1095-9572)
  • Related identifiers: doi: 10.1016/j.neuroimage.2015.03.070, pmc: PMC4461310
  • Subject: Resting state | BF | Connectivity | Motion | Noise correction | Regression | Cognitive Neuroscience | Neurology | Article | FMRI | R1

Noise correction is a critical step towards accurate mapping of resting state BOLD fMRI connectivity. Noise sources related to head motion or physiology are typically modelled by nuisance regressors, and a generalised linear model is applied to regress out the associate... View more
  • References (37)
    37 references, page 1 of 4

    Beckmann, C.F., DeLuca, M., Devlin, J.T., Smith, S.M., 2005. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc., B 360, 1001-1013. http://dx.doi.org/10.1002/(SICI)1097-0193(1999)8:2/3b151::AIDHBM13N3.0.CO;2-5.

    Birn, R.M., Smith, M.A., Jones, T.B., Bandettini, P.A., 2008. The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. NeuroImage 40, 644-654. http://dx.doi.org/10.1016/j. neuroimage.2007.11.059.

    Birn, R.M., Molloy, E.K., Patriat, R., Parker, T., Meier, T.B., Kirk, G.R., Nair, V.A., Meyerand, M.E., Prabhakaran, V., 2013. The effect of scan length on the reliability of restingstate fMRI connectivity estimates. NeuroImage 83, 550-558. http://dx.doi.org/10. 1016/j.neuroimage.2013.05.099.

    Bright, M.G., Murphy, K., 2013a. Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data. NeuroImage 64, 526-537. http://dx.doi. org/10.1016/j.neuroimage.2012.09.043.

    Bright, M.G., Murphy, K., 2013b. Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance. NeuroImage 83C, 559-568. http://dx. doi.org/10.1016/j.neuroimage.2013.07.007.

    Bright, M.G., Bulte, D.P., Jezzard, P., Duyn, J.H., 2009. Characterization of regional heterogeneity in cerebrovascular reactivity dynamics using novel hypocapnia task and BOLD fMRI. NeuroImage 48, 166-175. http://dx.doi.org/10.1016/j.neuroimage.2009.05.026.

    Bullmore, E.T., Brammer, M.J., Rabe-Hesketh, S., Curtis, V.A., Morris, R.G., Williams, S.C., Sharma, T., McGuire, P.K., 1999. Methods for diagnosis and treatment of stimuluscorrelated motion in generic brain activation studies using fMRI. Hum. Brain Mapp. 7, 38-48.

    Chang, C., Cunningham, J.P., Glover, G.H., 2009. Influence of heart rate on the BOLD signal: the cardiac response function. NeuroImage 44, 857-869. http://dx.doi.org/10.1016/j. neuroimage.2008.09.029.

    Churchill, N.W., Yourganov, G., Oder, A., Tam, F., Graham, S.J., Strother, S.C., 2012. Optimizing preprocessing and analysis pipelines for single-subject fMRI: 2. Interactions with ICA, PCA, task contrast and inter-subject heterogeneity. PLoS ONE 7, e31147. http:// dx.doi.org/10.1371/journal.pone.0031147.

    Cox, R.W., 1996. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162-173.

  • Related Research Results (1)
  • Metrics
    0
    views in OpenAIRE
    0
    views in local repository
    56
    downloads in local repository

    The information is available from the following content providers:

    FromNumber Of ViewsNumber Of Downloads
    Online Research @ Cardiff - IRUS-UK 0 56
Share - Bookmark