publication . Article . Other literature type . Preprint . 2020

Generalizing the relativistic quantization condition to include all three-pion isospin channels

Maxwell T. Hansen; Fernando Romero-López; Stephen R. Sharpe;
Open Access English
  • Published: 24 Mar 2020
  • Publisher: Springer
Abstract
We present a generalization of the relativistic, finite-volume, three-particle quantization condition for non-identical pions in isosymmetric QCD. The resulting formalism allows one to use discrete finite-volume energies, determined using lattice QCD, to constrain scattering amplitudes for all possible values of two- and three-pion isospin. As for the case of identical pions considered previously, the result splits into two steps: The first defines a non-perturbative function with roots equal to the allowed energies, $E_n(L)$, in a given cubic volume with side-length $L$. This function depends on an intermediate three-body quantity, denoted $\mathcal{K}_{\mathrm...
Subjects
free text keywords: nucl-th, Nuclear Physics - Theory, hep-ph, Particle Physics - Phenomenology, hep-lat, Particle Physics - Lattice, Lattice QCD, Scattering Amplitudes, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798, High Energy Physics - Lattice, High Energy Physics - Phenomenology, Nuclear Theory, Nuclear and High Energy Physics
Funded by
EC| ELUSIVES
Project
ELUSIVES
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
,
EC| INPhINIT
Project
INPhINIT
Innovative doctoral programme for talented early-stage researchers in Spanish host organisations excellent in the areas of Science, Technology, Engineering and Mathematics (STEM).
  • Funder: European Commission (EC)
  • Project Code: 713673
  • Funding stream: H2020 | MSCA-COFUND-DP
,
EC| InvisiblesPlus
Project
InvisiblesPlus
InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
30 references, page 1 of 2

[13] K. Polejaeva and A. Rusetsky, Three particles in a finite volume, Eur. Phys. J. A 48 (2012) 67 [1203.1241]. [OpenAIRE]

[14] P. Guo and V. Gasparian, A solvable three-body model in finite volume, Phys. Lett. B774 (2017) 441 [1701.00438]. [OpenAIRE]

[15] P. Klos, S. K¨onig, H. W. Hammer, J. E. Lynn and A. Schwenk, Signatures of few-body resonances in finite volume, Phys. Rev. C98 (2018) 034004 [1805.02029].

[16] P. Guo, M. D¨oring and A. P. Szczepaniak, Variational approach to N -body interactions in finite volume, Phys. Rev. D98 (2018) 094502 [1810.01261].

[17] M. T. Hansen and S. R. Sharpe, Relativistic, model-independent, three-particle quantization condition, Phys. Rev. D90 (2014) 116003 [1408.5933].

[18] M. T. Hansen and S. R. Sharpe, Expressing the three-particle finite-volume spectrum in terms of the three-to-three scattering amplitude, Phys. Rev. D92 (2015) 114509 [1504.04248].

[19] R. A. Bricen˜o, M. T. Hansen and S. R. Sharpe, Relating the finite-volume spectrum and the two-and-three-particle S matrix for relativistic systems of identical scalar particles, Phys. Rev. D95 (2017) 074510 [1701.07465].

[20] R. A. Bricen˜o, M. T. Hansen and S. R. Sharpe, Numerical study of the relativistic three-body quantization condition in the isotropic approximation, Phys. Rev. D98 (2018) 014506 [1803.04169].

[21] R. A. Bricen˜o, M. T. Hansen and S. R. Sharpe, Three-particle systems with resonant subprocesses in a finite volume, Phys. Rev. D99 (2019) 014516 [1810.01429].

[22] T. D. Blanton, F. Romero-L´opez and S. R. Sharpe, Implementing the three-particle quantization condition including higher partial waves, JHEP 03 (2019) 106 [1901.07095].

[23] F. Romero-L´opez, S. R. Sharpe, T. D. Blanton, R. A. Bricen˜o and M. T. Hansen, Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states, JHEP 10 (2019) 007 [1908.02411].

[24] T. D. Blanton, F. Romero-L´opez and S. R. Sharpe, I = 3 three-pion scattering amplitude from lattice QCD, Phys. Rev. Lett. 124 (2020) 032001 [1909.02973].

[25] H.-W. Hammer, J.-Y. Pang and A. Rusetsky, Three-particle quantization condition in a finite volume: 1. The role of the three-particle force, JHEP 09 (2017) 109 [1706.07700].

[26] H. W. Hammer, J. Y. Pang and A. Rusetsky, Three particle quantization condition in a finite volume: 2. general formalism and the analysis of data, JHEP 10 (2017) 115 [1707.02176].

[27] M. D¨oring, H. W. Hammer, M. Mai, J. Y. Pang, A. Rusetsky and J. Wu, Three-body spectrum in a finite volume: the role of cubic symmetry, Phys. Rev. D97 (2018) 114508 [1802.03362].

30 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue