publication . Article . 2017

The Flash-Lag Effect as a Motion-Based Predictive Shift

Khoei, Mina A.; Masson, Guillaume S.; Perrinet, Laurent U.;
Open Access English
  • Published: 26 Jan 2017
  • Publisher: HAL CCSD
  • Country: France
Abstract
Due to its inherent neural delays, the visual system has an outdated access to sensory information about the current position of moving objects. In contrast, living organisms are remarkably able to track and intercept moving objects under a large range of challenging environmental conditions. Physiological, behavioral and psychophysical evidences strongly suggest that position coding is extrapolated using an explicit and reliable representation of object’s motion but it is still unclear how these two representations interact. For instance, the so-called flash-lag effect supports the idea of a differential processing of position between moving and static objects....
Subjects
free text keywords: [SCCO.NEUR]Cognitive science/Neuroscience, [SDV]Life Sciences [q-bio], [SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC], Extrapolation, Motion, Velocity, Coding mechanisms, Vision, Psychophysics, Neural networks, Biology (General), QH301-705.5, Research Article, Physical Sciences, Mathematics, Numerical Analysis, Physics, Classical Mechanics, Biology and Life Sciences, Computational Biology, Computational Neuroscience, Neuroscience, Sensory Perception, Psychology, Social Sciences, Computer and Information Sciences, Probability Theory, Probability Distribution, Ecology, Modelling and Simulation, Computational Theory and Mathematics, Genetics, Ecology, Evolution, Behavior and Systematics, Molecular Biology, Cellular and Molecular Neuroscience, Probabilistic logic, Visual system, Biology, Neural coding, Artificial intelligence, business.industry, business, Artificial neural network, Motion perception, Computer vision, Visual processing, Perception, media_common.quotation_subject, media_common, Optical illusion
Funded by
EC| BRAINSCALES
Project
BRAINSCALES
Brain-inspired multiscale computation in neuromorphic hybrid systems
  • Funder: European Commission (EC)
  • Project Code: 269921
  • Funding stream: FP7 | SP1 | ICT
,
WT
Project
  • Funder: Wellcome Trust (WT)
,
EC| FACETS-ITN
Project
FACETS-ITN
Fast Analog Computing with Emergent Transient States - Initial Training Network (FACETS-ITN)
  • Funder: European Commission (EC)
  • Project Code: 237955
  • Funding stream: FP7 | SP3 | PEOPLE
Communities
FET FP7FET Proactive: FET proactive 8: Brain Inspired ICT
FET FP7FET Proactive: Brain-inspired multiscale computation in neuromorphic hybrid systems
61 references, page 1 of 5

1. Lisberger SG. Visual guidance of smooth-pursuit eye movements: sensation, action, and what happens in between. Neuron. 2010 May; 66(4):477±91. Available from: http://dx.doi.org/10.1016/j.neuron.2010. 03.027. PMID: 20510853 [OpenAIRE]

2. Masson GS, Perrinet LU. The behavioral receptive field underlying motion integration for primate tracking eye movements. Neuroscience & Biobehavioral Reviews. 2012 Jan; 36(1):1±25. Available from: http://dx.doi.org/10.1016/j.neubiorev.2011.03.009. PMID: 21421006 [OpenAIRE]

3. Montagnini A, Perrinet LU, Masson GS. 27. In: Keil M, CristoÂbal G, Perrinet LU, editors. Visual motion processing and human tracking behavior. Wiley, New-York; 2015. doi: 10.1002/9783527680863.ch12

4. Nijhawan R. Motion extrapolation in catching. Nature. 1994 Jul; 370 (6487). Available from: http://dx. doi.org/10.1038/370256b0. PMID: 8035873 [OpenAIRE]

5. Inui K, Kakigi R. Temporal Analysis of the Flow From V1 to the Extrastriate Cortex in Humans. Journal of Neurophysiology. 2006; 96(2):775±784. doi: 10.1152/jn.00103.2006 PMID: 16835365 [OpenAIRE]

6. Baldo MVC, Ranvaud RD, Morya E. Flag errors in soccer games: the flash-lag effect brought to real life. Perception. 2002; 31(10):1205±1210. Available from: http://dx.doi.org/10.1068/p3422. PMID: 12430947

7. Franklin DW, Wolpert D. Computational mechanisms of sensorimotor control. Neuron. 2011; 72:425± 442. doi: 10.1016/j.neuron.2011.10.006 PMID: 22078503

8. Perrinet LU, Adams RA, Friston K. Active Inference, eye movements and oculomotor delays. Biological Cybernetics. 2014;. doi: 10.1007/s00422-014-0620-8 PMID: 25128318

9. Nijhawan R, Khurana B, editors. Space and Time in Perception and Action. Cambridge Univ Press; 2010. doi: 10.1017/CBO9780511750540

10. MacKay DM. Perceptual Stability of a Stroboscopically Lit Visual Field containing Self-Luminous Objects. Nature. 1958 Feb; 181(4607):507±508. Available from: http://dx.doi.org/10.1038/181507a0. PMID: 13517199

11. MuÈsseler J, Stork S, Kerzel D. Comparing mislocalizations with moving stimuli: The FroÈhlich effect, the flash-lag, and representational momentum. Visual Cognition. 2002 feb; 9(1±2):120±138. Available from: http://www.tandfonline.com/doi/abs/10.1080/13506280143000359.

13. Jancke D, Erlhagen W. Bridging the gap: a model of common neural mechanisms underlying the FroÈhlich effect, the flash-lag effect, and the representational momentum effect. In: Nijhawan R, Khurana B, editors. Space and Time in Perception and Action. Cambridge Univ Press; 2010. p. 422±440. doi: 10. 1017/CBO9780511750540.025 [OpenAIRE]

14. Berry M, Brivanlou I, Jordan T, Meister M. Anticipation of moving stimuli by the retina. Nature. 1999; 398(6725):334±338. doi: 10.1038/18678 PMID: 10192333

15. Jancke D, Erlhagen W, SchoÈner G, Dinse H. Shorter latencies for motion trajectories than for flashes in population responses of cat primary visual cortex. The Journal of Physiology. 2004; 556(3):971±982. doi: 10.1113/jphysiol.2003.058941 PMID: 14978201 [OpenAIRE]

16. Perrinet LU, Masson GS. Motion-Based Prediction Is Sufficient to Solve the Aperture Problem. Neural Computation. 2012 Oct; 24(10):2726±2750. Available from: http://dx.doi.org/10.1162/NECO_a_00332. PMID: 22734489

61 references, page 1 of 5
Abstract
Due to its inherent neural delays, the visual system has an outdated access to sensory information about the current position of moving objects. In contrast, living organisms are remarkably able to track and intercept moving objects under a large range of challenging environmental conditions. Physiological, behavioral and psychophysical evidences strongly suggest that position coding is extrapolated using an explicit and reliable representation of object’s motion but it is still unclear how these two representations interact. For instance, the so-called flash-lag effect supports the idea of a differential processing of position between moving and static objects....
Subjects
free text keywords: [SCCO.NEUR]Cognitive science/Neuroscience, [SDV]Life Sciences [q-bio], [SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC], Extrapolation, Motion, Velocity, Coding mechanisms, Vision, Psychophysics, Neural networks, Biology (General), QH301-705.5, Research Article, Physical Sciences, Mathematics, Numerical Analysis, Physics, Classical Mechanics, Biology and Life Sciences, Computational Biology, Computational Neuroscience, Neuroscience, Sensory Perception, Psychology, Social Sciences, Computer and Information Sciences, Probability Theory, Probability Distribution, Ecology, Modelling and Simulation, Computational Theory and Mathematics, Genetics, Ecology, Evolution, Behavior and Systematics, Molecular Biology, Cellular and Molecular Neuroscience, Probabilistic logic, Visual system, Biology, Neural coding, Artificial intelligence, business.industry, business, Artificial neural network, Motion perception, Computer vision, Visual processing, Perception, media_common.quotation_subject, media_common, Optical illusion
Funded by
EC| BRAINSCALES
Project
BRAINSCALES
Brain-inspired multiscale computation in neuromorphic hybrid systems
  • Funder: European Commission (EC)
  • Project Code: 269921
  • Funding stream: FP7 | SP1 | ICT
,
WT
Project
  • Funder: Wellcome Trust (WT)
,
EC| FACETS-ITN
Project
FACETS-ITN
Fast Analog Computing with Emergent Transient States - Initial Training Network (FACETS-ITN)
  • Funder: European Commission (EC)
  • Project Code: 237955
  • Funding stream: FP7 | SP3 | PEOPLE
Communities
FET FP7FET Proactive: FET proactive 8: Brain Inspired ICT
FET FP7FET Proactive: Brain-inspired multiscale computation in neuromorphic hybrid systems
61 references, page 1 of 5

1. Lisberger SG. Visual guidance of smooth-pursuit eye movements: sensation, action, and what happens in between. Neuron. 2010 May; 66(4):477±91. Available from: http://dx.doi.org/10.1016/j.neuron.2010. 03.027. PMID: 20510853 [OpenAIRE]

2. Masson GS, Perrinet LU. The behavioral receptive field underlying motion integration for primate tracking eye movements. Neuroscience & Biobehavioral Reviews. 2012 Jan; 36(1):1±25. Available from: http://dx.doi.org/10.1016/j.neubiorev.2011.03.009. PMID: 21421006 [OpenAIRE]

3. Montagnini A, Perrinet LU, Masson GS. 27. In: Keil M, CristoÂbal G, Perrinet LU, editors. Visual motion processing and human tracking behavior. Wiley, New-York; 2015. doi: 10.1002/9783527680863.ch12

4. Nijhawan R. Motion extrapolation in catching. Nature. 1994 Jul; 370 (6487). Available from: http://dx. doi.org/10.1038/370256b0. PMID: 8035873 [OpenAIRE]

5. Inui K, Kakigi R. Temporal Analysis of the Flow From V1 to the Extrastriate Cortex in Humans. Journal of Neurophysiology. 2006; 96(2):775±784. doi: 10.1152/jn.00103.2006 PMID: 16835365 [OpenAIRE]

6. Baldo MVC, Ranvaud RD, Morya E. Flag errors in soccer games: the flash-lag effect brought to real life. Perception. 2002; 31(10):1205±1210. Available from: http://dx.doi.org/10.1068/p3422. PMID: 12430947

7. Franklin DW, Wolpert D. Computational mechanisms of sensorimotor control. Neuron. 2011; 72:425± 442. doi: 10.1016/j.neuron.2011.10.006 PMID: 22078503

8. Perrinet LU, Adams RA, Friston K. Active Inference, eye movements and oculomotor delays. Biological Cybernetics. 2014;. doi: 10.1007/s00422-014-0620-8 PMID: 25128318

9. Nijhawan R, Khurana B, editors. Space and Time in Perception and Action. Cambridge Univ Press; 2010. doi: 10.1017/CBO9780511750540

10. MacKay DM. Perceptual Stability of a Stroboscopically Lit Visual Field containing Self-Luminous Objects. Nature. 1958 Feb; 181(4607):507±508. Available from: http://dx.doi.org/10.1038/181507a0. PMID: 13517199

11. MuÈsseler J, Stork S, Kerzel D. Comparing mislocalizations with moving stimuli: The FroÈhlich effect, the flash-lag, and representational momentum. Visual Cognition. 2002 feb; 9(1±2):120±138. Available from: http://www.tandfonline.com/doi/abs/10.1080/13506280143000359.

13. Jancke D, Erlhagen W. Bridging the gap: a model of common neural mechanisms underlying the FroÈhlich effect, the flash-lag effect, and the representational momentum effect. In: Nijhawan R, Khurana B, editors. Space and Time in Perception and Action. Cambridge Univ Press; 2010. p. 422±440. doi: 10. 1017/CBO9780511750540.025 [OpenAIRE]

14. Berry M, Brivanlou I, Jordan T, Meister M. Anticipation of moving stimuli by the retina. Nature. 1999; 398(6725):334±338. doi: 10.1038/18678 PMID: 10192333

15. Jancke D, Erlhagen W, SchoÈner G, Dinse H. Shorter latencies for motion trajectories than for flashes in population responses of cat primary visual cortex. The Journal of Physiology. 2004; 556(3):971±982. doi: 10.1113/jphysiol.2003.058941 PMID: 14978201 [OpenAIRE]

16. Perrinet LU, Masson GS. Motion-Based Prediction Is Sufficient to Solve the Aperture Problem. Neural Computation. 2012 Oct; 24(10):2726±2750. Available from: http://dx.doi.org/10.1162/NECO_a_00332. PMID: 22734489

61 references, page 1 of 5
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2017

The Flash-Lag Effect as a Motion-Based Predictive Shift

Khoei, Mina A.; Masson, Guillaume S.; Perrinet, Laurent U.;