Antibacterial Metallic Touch Surfaces

Article English OPEN
Villapún, Victor M.; Dover, Lynn G.; Cross, Andrew; González, Sergio;
  • Publisher: MDPI AG
  • Journal: Materials,volume 9,issue 9 (issn: 1996-1944, eissn: 1996-1944)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.3390/ma9090736, pmc: PMC5457048
  • Subject: QC120-168.85 | antimicrobial | disinfection | Engineering (General). Civil engineering (General) | Technology | touch surfaces | TA1-2040 | T | Review | Electrical engineering. Electronics. Nuclear engineering | TK1-9971 | copper | Microscopy | J500 | QH201-278.5 | Descriptive and experimental mechanics | C500

Our aim is to present a comprehensive review of the development of modern antibacterial metallic materials as touch surfaces in healthcare settings. Initially we compare Japanese, European and US standards for the assessment of antimicrobial activity. The variations in ... View more
  • References (124)
    124 references, page 1 of 13

    European Centre for Disease Prevention and Control. Point Prevalence Survey of Healthcare Associated Infections and Antimicrobial Use in European Acute Care Hospitals; ECDC: Stockholm, Sweden, 2013. European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2014. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net); ECDC: Stockholm, Sweden, 2015.

    Dollwet, H.H.A.; Sorenson, J.R.J. Historic Uses of Copper-Compounds in Medicine. Trace Elem. Med. 1985, 2, 80-87.

    Wilks, S.A.; Michels, H.; Keevil, C.W. The survival of Escherichia coli O157 on a range of metal surfaces. Int. J. Food Microbiol. 2005, 105, 445-454. [CrossRef] [PubMed]

    5. Santo, C.E.; Lam, E.W.; Elowsky, C.G.; Quaranta, D.; Domaille, D.W.; Chang, C.J.; Grass, G. Bacterial Killing by Dry Metallic Copper Surfaces. Appl. Environ. Microbiol. 2011, 77, 794-802. [CrossRef] [PubMed]

    6. Warnes, S.L. Laboratory Studies to Investigate the Efficacy and Mechanism of Action of Copper Alloys to Kill a Range of Bacterial Pathogens and Inactive Norovirus. Ph.D. Thesis, University of Southampton, Faculty for Natural and Environmental Sciences, Southampton, UK, 2014.

    7. Warnes, S.L.; Highmore, C.J.; Keevil, C.W. Horizontal transfer of antibiotic resistance genes on abiotic touch surfaces: Implications for public health. mBio 2012, 3, e00489. [CrossRef] [PubMed]

    8. Warnes, S.L.; Keevil, C.W. Inactivation of norovirus on dry copper alloy surfaces. PLoS ONE 2013, 8, e75017. [CrossRef] [PubMed]

    9. Borkow, G.; Gabbay, J. Copper, An Ancient Remedy Returning to Fight Microbial, Fungal and Viral Infections. Curr. Chem. Biol. 2009, 3, 272-278. [CrossRef]

    10. Grass, G.; Rensing, C.; Solioz, M. Metallic Copper as an Antimicrobial Surface. Appl. Environ. Microbiol. 2011, 77, 1541-1547. [CrossRef] [PubMed]

    11. Huang, L.; Fozo, E.M.; Zhang, T.; Liaw, P.K.; He, W. Antimicrobial behavior of Cu-bearing Zr-based bulk metallic glasses. Mater. Sci. Eng. C Mater. 2014, 39, 325-329. [CrossRef] [PubMed]

  • Related Research Results (1)
  • Related Organizations (3)
  • Metrics
Share - Bookmark