Search for physics beyond the standard model in events with tau leptons, jets, and large transverse momentum imbalance in pp collisions at sqrt(s) = 7 TeV

Article, Preprint English OPEN
CMS Collaboration (2013)
  • Publisher: Springer
  • Journal: (issn: 1434-6044)
  • Related identifiers: doi: 10.1140/epjc/s10052-013-2493-8
  • Subject: SUPERSYMMETRY | Standard Model | Higgs-Boson | Engineering (miscellaneous) | High Energy Physics - Experiment | Top-quark | Particle | Physics and Astronomy (miscellaneous) | SQUARK | Pole mass
    • ddc: ddc:530

A simultaneous measurement of the top-quark, W-boson, and neutrino masses is reported for t (t) over bar events selected in the dilepton final state from a data sample corresponding to an integrated luminosity of 5.0 fb(-1) collected by the CMS experiment in pp collisions at root s = 7 TeV. The analysis is based on endpoint determinations in kinematic distributions. When the neutrino and W-boson masses are constrained to their world-average values, a top-quark mass value of M-t = 173.9 +/- 0.9 (stat.)=(+ 1.7)(-2.1) (syst.) GeV is obtained. When such constraints are not used, the three particle masses are obtained in a simultaneous fit. In this unconstrained mode the study serves as a test of mass determination methods that may be used in beyond standard model physics scenarios where several masses in a decay chain may be unknown and undetected particles lead to underconstrained kinematics. The Austrian Federal Ministry of Science and Research and the Austrian Science Fund ; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek ; the Brazilian Funding Agencies ; the Bulgarian Ministry of Education and Science; CERN ; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China ; the Colombian Funding Agency ; the Croatian Ministry of Science, Education and Sport ; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research ; and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules/CNRS, and Commissariat a l’Energie Atomique et aux Energies Alternatives/CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Republic of Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies ; the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundac¸ao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaria de Estado de Investigacio´n, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies ; the National Science Council, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand ; the Scientific and Technical Research Council of Turkey and Turkish Atomic Energy Authority ; the Science and Technology Facilities Council UK; the U.S. Department of Energy and the U.S. National Science Foundation ; European Union ; the Leventis Foundation ; the A. P. Sloan Foundation ; the Alexander von Humboldt Foundation ; the Belgian Federal Science Policy Office ; the Fonds pour la Formation a` la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWTBelgium); the Ministry of Education Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research India; the Compagnia di San Paolo (Torino); the HOMING PLUS program of Foundation for Polish Science cofinanced by EU Regional Development Fund ; the Norman Hackerman Advanced Research Program."
  • References (44)
    44 references, page 1 of 5

    1. J.F. Gunion et al., The Higgs Hunter's Guide (2000), Westview Press

    2. E. Komatsu et al., Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011). doi:10.1088/0067-0049/192/2/18, arXiv:1001.4538

    3. S.P. Martin, A supersymmetry primer (1997). arXiv:hep-ph/ 9709356

    4. J. Wess, B. Zumino, Supergauge transformations in fourdimensions. Nucl. Phys. B 70, 39 (1974). doi:10.1016/0550- 3213(74)90355-1

    5. A.H. Chamseddine, R. Arnowitt, P. Nath, Locally supersymmetric grand unification. Phys. Rev. Lett. 49, 970 (1982). doi:10.1103/ PhysRevLett.49.970

    6. L. Hall, J. Lykken, S. Weinberg, Supergravity as the messenger of supersymmetry breaking. Phys. Rev. D 27, 2359 (1983). doi:10. 1103/PhysRevD.27.2359

    7. K. Griest, D. Seckel, Three exceptions in the calculation of relic abundances. Phys. Rev. D 43, 3191 (1991). doi:10.1103/ PhysRevD.43.3191

    8. R. Arnowitt et al., Determining the dark matter relic density in the minimal supergravity stau-neutralino coannihilation region at the large hadron collider. Phys. Rev. Lett. 100, 231802 (2008). doi:10. 1103/PhysRevLett.100.231802, arXiv:0802.2968

    9. CMS Collaboration, The CMS experiment at the CERN LHC. J. Instrum. 03, S08004 (2008). doi:10.1088/1748-0221/3/08/ S08004

    10. G.L. Kane et al., Study of constrained minimal supersymmetry. Phys. Rev. D 49, 6173 (1994). doi:10.1103/PhysRevD.49.6173, arXiv:hep-ph/9312272

  • Related Research Results (2)
  • Metrics
    No metrics available
Share - Bookmark