A parallel nearly implicit time-stepping scheme

Article English OPEN
Botchev, M.A.; Vorst, Henk;

Across-the-space parallelism still remains the most mature, convenient and natural way to parallelize large scale problems. One of the major problems here is that implicit time stepping is often difficult to parallelize due to the structure of the system. Approximate im... View more
  • References (39)
    39 references, page 1 of 4

    [1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK user's guide. SIAM, Philadelphia, PA, 2 edition, 1995. URL http://www.netlib.org/lapack/.

    [2] Z. Bai, D. Hu, and L. Reichel. A Newton basis GMRES implementation. IMA J. Numer. Anal., 14:563-581, 1991.

    [3] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. A. van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, 1994. URL http://www.netlib.org/templates/.

    [4] M. A. Botchev, G. L. G. Sleijpen, and H. A. van der Vorst. Stability control for approximate implicit time-stepping schemes with minimal residual iterations. Technical Report 1043, Department of Mathematics, Utrecht University, Dec. 1997. Available at URL http:// www.math.uu.nl/publications/.

    [5] M. A. Botchev, G. L. G. Sleijpen, and H. A. van der Vorst. Stability control for approximate implicit time stepping schemes with minimum residual iterations. Appl. Numer. Math., 31(3):239-253, 1999.

    [6] J. Burmeister and G. Horton. Time-parallel multigrid solution of the Navier-Stokes equations. In W. Hackbusch and U. Trottenberg, editors, Multigrid methods, III (Bonn, 1990), pages 155-166. Birkh¨auser, Basel, 1991.

    [7] K. Burrage. Parallel and sequential methods for ordinary differential equations. The Clarendon Press Oxford University Press, New York, 1995. Oxford Science Publications.

    [8] K. Burrage, editor. Parallel methods for ODEs. Baltzer Science Publishers BV, Amsterdam, 1997. Adv. Comput. Math. 7 (1997), no. 1-2.

    [9] G. D. Byrne, A. C. Hindmarsh, and P. N. Brown. VODPK, large non-stiff or stiff ordinary differential equation initial-value problem solver. Available at URL http://www.netlib.org, 1997.

    [10] T. F. Chan and K. R. Jackson. The use of iterative linear-equation solvers in codes for large systems of stiff IVPs for ODEs. SIAM J. Sci. Stat. Comput., 7(2):378-417, 1986.

  • Metrics
Share - Bookmark