Probabilistic lexical generalization for French dependency parsing

Conference object English OPEN
Henestroza Anguiano , Enrique; Candito , Marie;
(2012)
  • Publisher: HAL CCSD
  • Subject: [ INFO.INFO-TT ] Computer Science [cs]/Document and Text Processing
    arxiv: Computer Science::Information Retrieval | Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)
    acm: InformationSystems_INFORMATIONSTORAGEANDRETRIEVAL

International audience; This paper investigates the impact on French dependency parsing of lexical generalization methods beyond lemmatization and morphological analysis. A distributional thesaurus is created from a large text corpus and used for distributional clusteri... View more
  • References (31)
    31 references, page 1 of 4

    A. Abeille´ and N. Barrier. 2004. Enriching a French treebank. In Proceedings of the 4th International Conference on Language Resources and Evaluation, Lisbon, Portugal, May.

    E. Agirre, T. Baldwin, and D. Martinez. 2008. Improving parsing and PP attachment performance with sense information. In Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics, pages 317-325, Columbus, Ohio, June.

    E. Agirre, K. Bengoetxea, K. Gojenola, and J. Nivre. 2011. Improving dependency parsing with semantic classes. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 699-703, Portland, Oregon, June.

    D.M. Bikel. 2000. A statistical model for parsing and word-sense disambiguation. In Proceedings of the EMNLP/VLC-2000, pages 155-163, Hong Kong, October.

    S. Bird, E. Loper, and E. Klein. 2009. Natural Language Processing with Python. O'Reilly Media Inc.

    P.F. Brown, P.V. Desouza, R.L. Mercer, V.J.D. Pietra, and J.C. Lai. 1992. Class-based n-gram models of natural language. Computational Linguistics, 18(4):467-479.

    R.C. Bunescu. 2008. Learning with probabilistic features for improved pipeline models. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 670-679, Honolulu, Hawaii, October.

    M. Candito and B. Crabbe´. 2009. Improving generative statistical parsing with semi-supervised word clustering. In Proceedings of the 11th International Conference on Parsing Technologies, pages 138-141, Paris, France, October.

    M. Candito and D. Seddah. 2012. Le corpus Sequoia : annotation syntaxique et exploitation pour l'adaptation d'analyseur par pont lexical. In Actes de la 19e`me confe´rence sur le traitement automatique des langues naturelles, Grenoble, France, June. To Appear.

    M. Candito, B. Crabbe´, and P. Denis. 2010a. Statistical French dependency parsing: Treebank conversion and first results. In Proceedings of the 7th International Conference on Language Resources and Evaluation, Valetta, Malta, May.

  • Metrics
Share - Bookmark